全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014高中数学精讲精练 第五章 数列【知识图解】 函 数数 列一般数列通项前项 和特殊数列等差数列等比数列通项公式中项性质前项和公式公式通项公式中项性质前项和公式公式【方法点拨】1学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证2强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧3在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化4一些简单特殊数列的求通项与求和问题,应注重通性通法的复习如错位相减法、迭加法、迭乘法等5增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解第1课数列的概念【考点导读】1 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2 理解数列的通项公式的意义和一些基本量之间的关系;3 能通过一些基本的转化解决数列的通项公式和前项和的问题。【基础练习】1.已知数列满足,则=。分析:由a1=0,得 由此可知: 数列是周期变化的,且三个一循环,所以可得: 2在数列中,若,则该数列的通项 2n-1 。3设数列的前n项和为, ,且,则_2_.4已知数列的前项和,则其通项 【范例导析】例1设数列的通项公式是,则(1)70是这个数列中的项吗?如果是,是第几项?(2)写出这个数列的前5项,并作出前5项的图象;(3)这个数列所有项中有没有最小的项?如果有,是第几项?分析:70是否是数列的项,只要通过解方程就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。解:(1)由得:或所以70是这个数列中的项,是第13项。(2)这个数列的前5项是;(图象略)(3)由函数的单调性:是减区间,是增区间,所以当时,最小,即最小。点评:该题考察数列通项的定义,会判断数列项的归属,要注重函数与数列之间的联系,用函数的观点解决数列的问题有时非常方便。例2设数列的前n项和为,点均在函数y3x2的图像上,求数列的通项公式。 分析:根据题目的条件利用与的关系: ,(要特别注意讨论n=1的情况)求出数列的通项。解:依题意得,即。当n2时,;当n=1时, 所以。例3已知数列a满足,()求数列的通项公式;()若数列满足,证明:是等差数列;分析:本题第1问采用构造等比数列来求通项问题,第2问依然是构造问题。解:(i)是以为首项,2为公比的等比数列。即(ii);,得即,得即是等差数列。点评:本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。【反馈演练】1若数列前8项的值各异,且对任意nn*都成立,则下列数列中可取遍 前8项值的数列为 (2) 。(1) (2) (3) (4)2设sn是数列的前n项和,且sn=n2,则是 等差数列,但不是等比数列 。3设f(n)=(nn),那么f(n+1)f(n)等于 。4根据市场调查结果,预测某种家用商品从年初开始的n个月内累积的需求量sn(万件)近似地满足sn=(21nn25)(n=1,2,12).按此预测,在本年度内,需求量超过1.5万件的月份是 7月、8月 。5在数列中,则 50
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广西自然资源职业技术学院马克思主义基本原理概论期末考试参考题库
- 2024年辽宁医药职业学院马克思主义基本原理概论期末考试真题汇编
- 2025年广西经贸职业技术学院马克思主义基本原理概论期末考试真题汇编
- 2025年泰山护理职业学院马克思主义基本原理概论期末考试笔试题库
- 2025年首都师范大学科德学院马克思主义基本原理概论期末考试参考题库
- 幼儿园特色美术课程合作方案
- 高速公路广告位租赁方案
- 儿童乐园设备采购合同
- 应急管理部安全培训教材课件
- 2026年企业并购合同条款
- 塔司、信号工安全晨会(班前会)
- 2024春期国开电大《应用写作(汉语)》形考任务1-6参考答案
- 第11课《以社会主义核心价值观引领文化建设》第1框《社会主义核心价值观》课件 2023-2024学年 中职高教版(2023)中国特色社会主义
- 2024全国职业院校技能大赛ZZ060母婴照护赛项规程+赛题
- 读书交流 《呼兰河传》课件
- 钢板铺设安全施工方案
- 学习动力的培养与保持
- 小学中学控辍保学防辍学主题班会模版成品课件
- 经纬度丛书 秦制两千年:封建帝王的权力规则
- ppt素材模板超级玛丽
- 金庸短篇小说《越女剑》中英文对照版
评论
0/150
提交评论