




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公开课二:定积分理论一、实际应用背景1、运动问题设物体运动速度为,求上物体走过的路程。(1)取,其中;(2)任取,;(3)取,则2、曲边梯形的面积设曲线,由及轴围成的区域称为曲边梯形,求其面积。(1)取,其中;(2)任取,;(3)取,则。二、定积分理论(一)定积分的定义设为上的有界函数,(1)取,其中;(2)任取,作;(3)取,若存在,称在上可积,极限称为在上的定积分,记,即。【注解】(1)极限与区间的划分及的取法无关。【例题】当时,令,对,情形一:取所有,则;情形二:取所有,则,所以极限不存在,于是在上不可积。(2),反之不对。分法:等分,即,;取法:取或,则。则。【例题1】求极限。【解答】。【例题2】求极限【解答】。三、定积分的普通性质1、。2、。3、。4、。5、设,则。【证明】,因为,所以,又因为,所以,于是,由极限保号性得,即。(1)。(2)设,则。6(积分中值定理)设,则存在,使得。四、定积分基本理论定理1 设,令,则为的一个原函数,即。【注解】(1)连续函数一定存在原函数。(2),。(3)。【例题1】设连续,且,求。【解答】,。【例题2】设为连续函数,且,求。【解答】,。定理2 (牛顿莱布尼兹公式)设,且为的一个原函数,则。【证明】由得,从而,于是,注意到,所以,即。五、定积分的积分法(一)换元积分法设,令,其中可导,且,其中,则。(二)分部积分法。六、定积分的特殊性质1、对称区间上函数的定积分性质设,则(1)则。(2)若,则。(3)若,则。【例题1】设,其中为偶函数,证明:。【解答】。(2)计算。【解答】,因为,所以,取得,于是。2、周期函数定积分性质设以为周期,则(1),其中为任意常数(周期函数的平移性质)。如。(2)。3、特殊区间上三角函数定积分性质(1)设,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常德市物理期末考试卷及答案
- 叉车实操考试技巧卷子及答案
- 现代题目及答案李永乐
- 2025-2026学年人教版六年级数学上册第五单元圆应用题训练二【含答案】
- 物权法条例试题及答案
- 2025-2026学年人教版八年级数学上册期中评估测试卷(含答案)
- 2025商场店铺租赁合同书样本
- 物流计划管理试题及答案
- 物流概论学试题及答案
- 物料经理笔试题目及答案
- 建设工程质量检测人员考试:建设工程质量检测人员真题模拟汇编(共906题)
- 2019年黑龙江成人高考专升本艺术概论真题(含答案)
- 管理归零五条原则(管理归零的要求)
- 前交叉韧带损伤PPT
- 第四节老年人的营养需求
- 《无人机概论》课程标准(高职)
- 中望CAD电子教案
- 产学研合作管理制度
- 手术室护理相关知识100问课件
- 生物必修一课程纲要
- 监理规划编制案例
评论
0/150
提交评论