复旦大学数学分析习题课讲义.pdf_第1页
复旦大学数学分析习题课讲义.pdf_第2页
复旦大学数学分析习题课讲义.pdf_第3页
复旦大学数学分析习题课讲义.pdf_第4页
复旦大学数学分析习题课讲义.pdf_第5页
已阅读5页,还剩83页未读 继续免费阅读

复旦大学数学分析习题课讲义.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学分析习题课讲义 分析十段天元手筋 张毅 by Dr Yi Zhang Institute of Mathematical Sciences Fudan University Shanghai 200433 P R China zhangyi math Lecture given at Fudan University 2006 The author holds the copyright of this lecture notes Any person s intending to copy a part or whole of the materials in the notes in a proposed publication must seek copyright release from the author 1 Analysisi Dedicate to Katie 创造的神秘 有如夜间的黑暗 是伟大的 而知识的幻影 不过如晨间之雾 iiLecture Notes at Fudan Contents Referencesii 1 Problems on Sets Sequences and Limits1 1 1 Elementary Technique1 1 2 Applications of the Stolz theorem11 2 Inequality14 3 Orders Estimate of Infi nitesimal20 3 1 Notations and Examples20 3 2 Exercises and homework23 4 Application of Infi nitesimal Wallis Formula and Stirling Formula27 5 Topic on the Gamma functions30 5 1 functions30 5 2 Exercises34 6 Working Technique in function theory36 6 1 Iteration technique36 6 2 Exercises and Homework39 7 Applications of Diff erential41 8 Treasures in Calculus42 8 1 Euler s identifi cation 2 1 1 22 1 n2 2 6 42 8 2 Irrationality of log2 2 3 43 8 3 The properties of Tchebychev s functions46 8 4 Mertens Theorem and Selberg s Inequality53 8 5 An Elementary Proof of The Prime Number Theorem by Selberg and Erd os58 8 6 Gauss s Proof of The Fundamental Theorem of Algebra59 9 Advanced Techniques in Analysis60 9 1 Preliminary Results in Analysis60 9 2 Scaling Technique and Schauder Estimate72 9 3 Campanato s characterization of L2functions to be H older continuous79 10 Advanced Topics in Analysis82 10 1 Topic on Riemann Zeta Function To be Continuous 82 10 2 Elementary on Nevanlinna Theory To be Continuous 83 10 3 Elementary on p adic Series To be Continuous 84 References F M 菲赫金哥尔茨 微积分学教程 VOL I II III Higher Education Press H G H Hardy A Course of Pure Mathematics Tenth Edition Combridge University Press 2002 HUA 华罗庚 数论导引 科学出版社1979 J J Jost Partial Diff erential Equations GTM 214 Spinger 2002 P Problems Selection in The William Lowell Putnam Mathematical Competitions P Y 潘承洞 于秀源 阶的估计 Analysisiii 曾子曰 大学之道 在明明德 在亲民 在止于至善 知止而后定 定而后能静 静而后能安 安而后能虑 虑而后能得 物有本末 事有始终 知所先后 则近道矣 Analysis1 1 Problems on Sets Sequences and Limits 1 1 Elementary Technique Exercise 1 1 Show that the set of all irrational number of R is uncountable Proof Suffi cient to show that the set of all irrational number in 0 1 is uncountable Otherwise the set of real numbers in 0 1 is countable ie 0 1 x1 x2 Cover each xi i 1 with the corresponding interval Ii xi 1 2 1 3 i xi 1 2 1 3 i Then there holds 0 1 x1 x2 i 1 Ii and so 1 l 0 1 X i 1 l Ii X i 1 l xi 1 2 1 3 i xi 1 2 1 3 i X i 1 1 3 i 1 2 It is a contradiction Example 1 2 Let R Q and 1 1 1 Let A n n N B n n N be two strictly increasing sequences of positive integers Show that A B N A B Proof We have 1 1 W L O G we assume 2 Then 1 A B 1 If a B 6 then there exist two integers m n such that m n q N Hence there holds that q m n q 1 A contradiction 2 If there is a positive integer p A B then there exist two integers m n such that m p m 1 and n p n 1 Therefore m p p 1 m 1 m 1 and n p 1 n 1 n 1 Since 1 1 1 we have m n p p 1 1 then f 2k 2f k 2 1 f k 2 1 f k 2 f k 1 and so we have an increasing sequence of integer f k f 2k f 4k f 2lk But it contradict that f is a bounded function with all values in Z Therefore f Z 1 0 1 c Let f 1 cos with 2 0 We can show that f n cos n n Z by induction and the formula 2cos cos cos cos Example 1 4 Defi ne the function G N 0 Z by G 0 0 G n n G G n 1 n N To show that G n 5 1 2 n 1 Proof 1 Actually we have 1 G n n and G n 1 G n n 1 At fi rst G 1 1 G 2 1 By induction we assume 1 G k k and G k 1 G k 1 k n 1 Then we have 1 G n 1 n 1 and so G G n 1 G n 1 n 1 1 n n 1 G n n G G n n 1 n G n G n 1 1 G G n 1 G G n 2 0 since 1 G n 2 G n 1 n 1 2 By induction we can show G n 1 G n 1 or 0 n 3 Defi ne F n n 1 where 5 1 2 Defi ne S n F n F F n 1 We are going to show that S n n and so F n G n Let K n and so n K with 0 1 Then F n n 1 K K F F n 1 F n K 1 Since 2 1 we have K 1 n 1 n 2 1 n K S n F n F F n 1 n 1 Analysis3 Let T 1 Then 1 T 0 1 T an and an N Defi ne bn a1 a2 an the least common multiple of a1 an To show that X n 1 1 bn Proof Let d n p p N p n Then d n 2 n and so we have n d bn 2 p bn By the previous exercise we obtain the result Example 1 6 To show lim n n X k 1 3 r 1 k n2 1 1 6 Proof Let k 3 r 1 k n2 1 Then 0 k 1 and k 1 3 k ON the other hand 1 k n2 1 k 3 1 3 2 k 3 k 3 k 1 4 2 k 3 k 1 4 k 3n2 2 3 k and so n X k 1 k 3n2 n X k 1 k n X k 1 4k2 27n4 k 3n2 4Lecture Notes at Fudan Since n X k 1 k n n 1 6 and n X k 1 k2 n n 1 2n 1 6 we have lim n n n 1 6n2 2n n 1 2n 1 3 27n4 lim n n X k 1 k lim n n n 1 6n2 Remark Let g x n X i 1 i 1 x i Then g x 1 x g x n X i 1 1 x i n 1 x n 1 and so g x 1 x 1 x n 1 x2 n 1 x n 1 3x Comparing the coeffi cient of the term x of the polynomial g x we have n X i 1 i2 C3 n 1 nC 2 n 1 n n 1 2n 1 6 Example 1 7 Let an bn be two sequence satisfying 1 an bn bn6 0 n 1 2 2 X n 1 an bn A X n 1 an bn 2 B Then the sum X n 1 an an bn is convergent Proof By the condition 2 for any R with 0 0 for any n l N we have an bn X i l ai bi and X i l ai bi 2 and so 1 7 1 an an bn an bn 1 an bn an bn 1 an bn 1 an bn 2 an bn an bn 2 1 X k 1 an bn 2k n N 1 7 2 n X k 1 an bn 2k an bn 2 1 an bn 2 2 an bn 2 2 2 n N Analysis5 1 7 3 X i l ai bi 3 X i l ai bi 3 v u u t X i l ai bi 2 v u u t X i l ai bi 4 X i l ai bi 2 l N On the other hand for l Nwe have X n l an an bn X n l an bn an bn 2 1 X k 1 an bn 2k 2 X n l an bn an bn 2 X k 1 an bn 2k But by 1 7 2 and 1 7 3 we have the following X n N an bn an bn 2 X k 1 an bn 2k X n l an bn n X n l an bn 2 n X n l an bn 3 1 an bn 2 2 3 X n l an bn 3 1 an bn 2 2 X n l an bn 3 2 At all we obtain X n l an an bn 0 and bn6 0 n N we have 0 0 and so bn an bn has a positive upper bounded uniformly for n N Therefore the sum X n 1 an an bn an bn is convergent Example 1 8 Let an be a sequence satisfying an 1 2 an 1 n N To shown that lim n an exists and lim n an 1 6Lecture Notes at Fudan Hint Let bn 1 an n 1 2 We have a new sequence bn with the relation 1 bn 1 bn 1 1 i e bn 1 bn 1 bn We fi nd bn 0 bn 1 0 If one bm 0 then bn 0 n m and limn an 1 No we assume bn6 0 n 1 2 Then we have 1 bn 1 1 bn 1 1 and so 1 bn 1 n 1 b1 i e bn 1 b1 nb1 1 0 n Example 1 9 Let an be a sequence satisfying 1 X n 1 an 1 2 for all n N 0 an X k n 1 ak Then for any x 0 1 there exists a subsequence ank of an such that X k 1 ank x Proof Defi ne the n1 n2 by induction 1 Let n1 min n an x It is well defi ned since by the condition 1 limn an 0 Then by the condition 2 we have 0 x then we defi ne n2 min n n1 an1 an n1 1 since by step 1 and then by the condition 2 we have an1 an2 1 an1 X k n2 ak x then we defi ne n3 min n n1 an1 an2 an nk k X i 1 ani an nk 1 since 1 9 1 By the condition 2 there must hold an1 an2 ank ank 1 1 k X j 1 anj X k nk 1 ak x It is a contradiction to the defi nition of nk 1 Example 1 10 1 Let f x x2 c Compute the iteration f n x f f f z n Solute Let x x2 g x x c Then we have f 1 g and f n x 1 g n where 1is the inverse function of g n x x nc and so f n x x2 nc 8Lecture Notes at Fudan 2 Let f x x 3 x3 c Compute the iteration f n x f f f z n Solute Let x x3 g x x x c Then we have f 1 g and f n x 1 g n where 1is the inverse function of By induction we have g n x x Pn 1 i o ci x cn Then f n x x 3 q Pn 1 i o ci x3 cn Exercise 1 11 a Let f x x3 6x2 12x 6 Compute the iteration f n x f f f z n b Let f x x 4 2x 1 Compute the iteration f n x f f f z n c Let f x 2x 1 x2 Compute the iteration f n x f f f z n Analysis9 Exercise 1 12 The sequence a0 a1 an is defi ned by a0 1 2 ak ak 1 1 na 2 k 1 To show that 1 1 n an 1 Hint By induction to show for any 1 k n we have n 1 2n k 2 ak n 2n k and let k n we get n 1 n 2 an 1 Exercise 1 13 Let a 1 a2 an be a sequence of diff erent positive integers To show that n X k 1 ak k2 n X k 1 1 k Hint Let Sk a1 ak Then Sk k X i 1 i k k 1 2 and we have n X k 1 ak k2 n X k 1 Sk 1 k2 1 k 1 2 Sn n2 n X k 1 k k 1 2 1 k2 1 k 1 2 n 1 2n Exercise 1 14 Let a1 a2 anand b1 b2 bn To show n X k 1 ak n X k 1 bk n n X k 1 akbk Proof Let D X k 1 akbk X k 1 ak X k 1 bk We have D1 0 and D 1 D X k 1 ak ak 1 bk bk 1 0 Exercise 1 15 1 To show that log n 1 n X k 1 1 k logn 1 10Lecture Notes at Fudan 2 Consider N N X k 1 1 k R To show that lim N N 2nfor all n N Exercise 1 18 If the following is true for all n N Bn A An 1 show that B A2 Analysis11 Hint lim n n n 1 2 Applications of the Stolz theorem Theorem Stolz theorem Let yn is strictly increasing sequence i e yn 1 yn and yn If lim n xn xn 1 yn yn 1 a a Then lim n xn yn a Example 1 19 Let an bn be two sequences satisfying that bn 1 an 918an 1 n N Then we have lim n bnexists lim n anexists Proof We only prove the part Let b limn bn We defi ne two new sequences n b 919 an n b bn 918 n 1 2 Let 1 918 then the sequences n n satisfy n 1 n n 1 By induction we have n 1 n 1 X i 1 i n 1 i n 1 0 Pn 1 i 1 i 1 i 0 1 n 1 and so n 1 Pn 1 i 1 i 1 i 1 1 n 1 By the Stolz theorem we have lim n Pn 1 i 1 i 1 i 1 1 n lim n n 1 1 n 1 1 n 1 1 0 1 20 Exercises 1 Let p1 p2 pn be positive numbers If lim n pn p 0 then lim n n p 1p2 pn p 12Lecture Notes at Fudan 2 Let a0 a1 a2 an be positive numbers If lim n an 1 an p then lim n n a n p 3 To show for any k N lim n Pn i 1i k nk 1 1 k 1 Proof By Stolz theorem we compute lim n Pn 1 i 1 ik Pn i 1i k n 1 k 1 nk 1 lim n n 1 k n 1 k 1 nk 1 lim n n 1 k nk n 1 k 1 nk 1 nk On the other hand n 1 k nk 1 O 1 n n 1 k 1 nk 1 nk k 1 O 1 n 4 To show for any k N lim n n Pn i 1i k nk 1 1 k 1 1 2 Proof n Pn i 1i k nk 1 1 k 1 1 2 k 1 Pn i 1i k nk 1 k 1 nk By Stolz theorem it is suffi cient to compute that lim n k 1 n 1 k n 1 k 1 nk 1 k 1 n 1 k nk On the other hand k 1 n 1 k n 1 k 1 nk 1 k 1 k X i 0 Ci kn i k X i 0 Ci k 1n i k 1 X i 0 k 1 Ci k C i k 1 n i So k 1 n 1 k n 1 k 1 nk 1 k 1 n 1 k nk 1 2k k 1 O 1 n k k 1 O 1 n 5 Let x1 0 1 and xn be a sequence with xn 1 xn 1 xn n N Then we have lim n nxn 1 Analysis13 Proof Since x2 x1 1 x1 1 2 2 1 by induction we have xn 0 1 n N On the other hand xn 1 xn 1 xn 1 so xn is a strictly decreasing sequence with a fi nite bound and then lim n xn A 0 1 Moveover by A A 1 A we have A 0 By Stolz theorem lim n nxn lim n n 1 xn lim n n n 1 1 xn 1 xn 1 lim n 1 xn 1 6 let ak be a sequence satisfying that lim n An lim n n X k 1 ak A 0 with 1 p 1 q 1 Then we have n X k 1 akbk n X k 1 ap k 1 p n X k 1 bq k 1 q Moreover the inequality becomes to be an equality if and only if there exists a t R such that ap k tbq k k 1 n The proof of the H older inequality depends heavily on the following lemma Lemma 2 2 Let A B 0 then for any 0 1 we have A B1 A 1 B and the inequality becomes to be an equality if and only if A B Proof W L O G we assume A B 0 6 0 Then we have A B ZA B 1 x 1dx 1 0 with 1 p 1 q 1 Then we have AB 0 Exercise 2 4 Minkowski Inequality Let ak bk 0 k 1 n p 1 Then we have n X k 1 ak bk p 1 p n X k 1 ap k 1 p n X k 1 bp k 1 p Moreover the inequality becomes to be an equality if and only if there exists a t R such that ak tbk k 1 n Theorem 2 5 Arithmetic Mean Geometry Mean Inequality Let a1 anbe positive real numbers and a1 anbe positive real numbers with p1 pn 1 Then we have Gn n Y i 1 api i n X i 1 piai An moreover the inequality becomes to be an equality if and only if a1 a2 an Proof W L O G we assume a1 a2 an Then there exists an integer k 1 n 1 such that ak Gn ak 1 Analysis15 Consider the following formula An Gn 1 n X i 1 pi ai Gn Gn n X i 1 pi logai logGn Gn k X i 1 pi Gn ai Gn logGn logai n X i k 1 pi ai Gn Gn logai logGn k X i 1 pi Z Gn ai 1 Gn 1 t dt n X i k 1 pi Z ai Gn 1 Gn 1 t dt k X i 1 pi Z Gn ai 1 t 1 Gn n X i k 1 pi Z ai Gn 1 Gn 1 t 0 Moreover the inequality becomes to be an equality if and only if a1 a2 an Gn 2 6 Exercises 1 Let ak bk 0 k 1 n with 1 p 1 q 1 with 0 p n X k 1 ap k 1 p n X k 1 bq k 1 q Hint We have 0 1 1 p 1 0 1 q p 1 k 0 We defi ne Mp a Pn k 1a p k n 1 p To show that for 0 r s we always have Mr a 0 with 1 p 1 q 1 Assume P n 1a p n and P m 1b q n Then we have X m 1 X n 1 anbm m n sin p X n 1 ap n 1 p X m 1 bq m 1 q Hint Consider the following arguments a N X m 1 N X n 1 aman m n N X m 1 N X n 1 m n 1 pq am m n n m 1 pq an m n Analysis17 b m n 1 q 1 m n 1 m n m 1 q 1 n m Zn m n 1 m dx 1 x x 1 q Example 2 9 Hardy Landan inequality Let p and ak k 1 n be positive numbers To show for p 1 we have n X k 1 a1 ak k p p p 1 p n X k 1 ap k Hint Let Ak a1 ak k Then we have a Ap k p p 1A p 1 k ak Ap k p p 1A p 1 k Ak Ak 1 Ap k 1 kp p 1 k 1 p p 1 Ap 1 k Ak 1 Ap k p p 1A p 1 k ak Ap k 1 kp p 1 k 1 p 1 p 1 Ap k Ap k 1 1 p 1 k 1 A p k 1 kA p k b Thus we have n X k 1 Ap k p p 1A p 1 k ak p p 1 n X k 1 Ap 1 k ak again use H older inequality Example 2 10 Carleman inequality Let ak k N be positive numbers If X k 1 ak 0 k 1 n Denote Tl Pl k 1tk Show that n Y k 1 Atk k 1 Tn 1 Tn n X k 1 tkAk Hint Consider the following argument Let Lm m X k 1 Atk k Then we have Lm 1 Tm Atm m 1 Tm L 1 Tm 1 m 1 Tm 1 Tm A tm Tm m Tm 1 Tm L 1 Tm 1 m 1 tm Tm Am By induction we prove the statement 2 To show the Carleman inequality by using the Hardy Landan inequality Proof By the Hardy Landan inequality for all p 1 we have n X k 1 a1a2 ak 1 k n X k 1 a 1 p 1 a 1 p 2 a 1 p k k p p p 1 p n X k 1 ak Since lim p p p 1 p e we get n X k 1 a1a2 ak 1 k e n X k 1 ak 2 12 Appendix Computing the integral Z 0 dx 1 x x 1 q with residue theory Since 1 q 1 p 1 Then Z 0 dx 1 x x 1 q Z 0 x 1 p 1 1 xdx Analysis19 Let f z 1 1 z f z is a holomorphic at C 0 We have 2 1Resz 1 z 1 p 1f z Z R x 1 p 1f x dx Z R e 1 p 1 2 1 x 1 p 1f x dx Z z z 1 p 1f z dz Z z R z 1 p 1f z dz Resz 1 z 1 p 1f z e 1 p 1 logz z 1 e 1 p 1 log 1 1arg 1 e 1 p 1 1 e 1 p 1 On the other hand f z 1 z 1 Therefore we have Z z z 1 p 1f z dz 1 p 12 0 0 Z z R z 1 p 1f z dz R 1 p 1 R 2 R 0 R Z R x 1 p 1f x dx Z R e 1 p 1 2 1 x 1 p 1f x dx 1 e 1 p 1 2 1 Z R x 1 p 1f x dx At all we have 1 e 1 p 1 2 1 Z 0 x 1 p 1f x dx 2 1e 1 p 1 and so Z 0 dx 1 x x 1 q 2 1e 1 p 1 1 e 2 p 1 2 1 e 1 p 1 e 1 p 1 sin p 20Lecture Notes at Fudan 3 Orders Estimate of Infinitesimal 3 1 Notations and Examples 3 1 Notations 1 If lim x xo f x g x 0 we denote f x o g x It is obvious that o h o g o h g In particular let an be a sequence if lim n an 0 we denote an o 1 n 2 If lim x xo f x g x 1 we say f x and g x is equivalent for x x0 and we denote f x g x x x0 3 Let g x 0 if there is a constant A 0 such that f x Ag x x a b then we denote f x O g x x a b 4 Here we have some well know elementary functions For n even we denote n n n 2 n 4 4 2 For n odd we denote n n n 2 n 4 3 1 a sinx X k 0 1 k x2k 1 2k 1 x R and cosx X k 0 1 k x2k 2k x R b arctanx X k 0 1 k x2k 1 2k 1 x 1 c log 1 x X k 1 1 k 1 xk k x 1 d 1 x X k 0 k xk x 1 e ex X k 0 xk k x R Analysis21 f arctanx X k 1 n x2n 1 2n 1 x R g arcsinx x 1 3 1 2 x 3 1 5 3 4 x 5 1 2n 1 2n 1 2n x2n 1 x R Theorem In the neighborhood of x0 if f n x exists and f n x0 M then f x n 1 X k 0 f k x0 k x x0 k O x x0 n For examples we have a sinx x x3 3 O x 5 x R and cosx 1 x2 2 O x 4 x R b log 1 x x x2 2 O x 3 x 1 c 1 x 1 x O x2 R x 0 and A be any two constants Then for any 0 we have 1 xA o 1 x x 2 logxA o x x 3 f x A o e f x for any increasing function f x with lim x f x Proof Let n x be the integer part of x and m A 1 If x then n We have 1 x 1 n Cm 1 n m 1 m 1 m 1 n 2 m 1 if n 2m 1 Thus if x we have 1 x xA m 1 2m 1 m 1 nm 1 1 n m Let x y we get 1 Let e 1 x logy we get 2 3 is obvious Example 3 3 Let an bn be two sequences with an o bn n and bn 0 If P n 1bn then we have N X n 1 an o N X n 1 bn N 22Lecture Notes at Fudan Proof For any 0 there exists M 0 such that for any n M we always have an M we have N X n 1 an M X n 1 an N X n M 1 bn M X n 1 an N X n M 1 bn Since P n 1bn there exists N0 M such that if N N0 N X n 1 bn M X n 1 an So N X n 1 an 2 N X n 1 bn Example 3 4 Let ak be a sequences with ak 0 and P k 1ak L if X k n an O an then we have n X k 1 1 ak O 1 an Proof Let An X k n an then an An An 1 1 such that An Aan We therefore have An An An 1 A An 1 A 1 A An A 1 A l 1An l Thus n X k 1 1 ak An an n X k 1 A Ak A an n X k 1 An Ak A an n 1 X l 0 A 1 A l yn and yn If lim n xn xn 1 yn yn 1 a a Then lim n xn yn a Analysis23 Proof In case of a there is a N N such that xn 1 xn yn 1 ynfor n N and xn and lim n yn yn 1 xn xn 1 0 In case of a let tn xn Thus these two cases are reduced to the case fi nite constant a Now we assume that a is a fi nite constant Then we have xk xk 1 a yk yk 1 o yk yk 1 sum with k we get n X k 2 xk xk 1 n X k 2 a yk yk 1 n X k 2 o yk yk 1 Since yn 1 yn n N and yn we have n X k 2 o yk yk 1 o n X k 2 yk yk 1 o yn y1 o yn Thus xn x1 a yn y1 o yn 3 2 Exercises and homework 3 6 Exercises 1 To show lim n n n n 1 logn 1 Proof n n exp logn n 1 logn n O log 2 n n2 n n n 1 logn O log2n n Another proof given by a student Let t n n 1 Then t 0 n and n 1 t n and so n n n 1 logn nt nlog 1 t t log 1 t 1 log 1 1 1 t 1 t loge 1 n 2 To prove for x 0 lim n n2 n x n 1 x logx 24Lecture Notes at Fudan Proof n2 n x n 1 x n2x1 n 1 x 1 n n 1 n2x1 n 1 exp logx n n 1 exp logx n n 1 1 logx n n 1 O 1 n4 so we have n2 n x n 1 x n2x1 n logx n n 1 O 1 n4 x1 nlogx O 1 n2 3 To prove lim n cosn x n e x2 2 Proof cos x n n 1 x2 2n O 1 n2 n exp nlog 1 x2 2n O 1 n2 Since log 1 x2 2n O 1 n2 x2 2n O 1 n2 we have cos x n n e x2 2 1 O 1 n Another proof given by a student cos x n n 1 sin2 x n n 2 1 x2 n n x2 x2 2 e x2 2 n 4 To prove for 0 2 we have lim x r x q x x x 1 2 Proof r x q x x x 1 r 1 x x 2 2 1 2 x 1 1 2 x p 1 x 2 1 O 1 x thus r x q x x x 1 2 1 1 2x 2 1 O x 2 O 1 x 5 To show lim x 0 x tanx 1 x2 e 1 3 Analysis25 Proof x tanx xcosx sinx x 1 x2 2 O x4 x x3 6 O x5 1 x2 2 O x4 1 x2 6 O x4 1 x2 3 O x4 x tanx 1 x2 exp log1 x2 3 O x4 x2 exp x2 3 O x4 x2 e 1 3 O x 2 3 7 Homework 1 Euler constant To show that lim n n X k 1 1 k logn 0 bn 1 bn 1 n 1 log n 1 logn Z n 1 n 1 n 1 1 t dt 0 Thus lim n an lim n bn k we have bn 1 1 1 2 1 1 n 1 3 1 1 n 1 2 n 1 k 1 1 n 1 2 n 1 k n 26Lecture Notes at Fudan Thus e lim n 1 1 1 2 1 1 n 1 3 1 1 n 1 2 n 1 k 1 1 n 1 2 n 1 k n ak Therefore bk ak e k N and solim k ak e 3 To show that for 1 X k n 1 k O 1 n 1 n X

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论