




免费预览已结束,剩余16页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆锥的侧面积教学目标(一)教学知识点1经历探索圆锥侧面积计算公式的过程2了解圆锥的侧面积计算公式,并会应用公式解决问题(二)能力训练要求1经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力2了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力(三)情感与价值观要求1让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验2通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际教学重点1经历探索圆锥侧面积计算公式的过程2了解圆锥的侧面积计算公式,并会应用公式解决问题教学难点经历探索圆锥侧面积计算公式教学方法观察想象实践总结法教具准备一个圆锥模型(纸做)投影片两张第一张:(记作38a)第二张:(记作38b)教学过程创设问题情境,引入新课师大家见过圆锥吗?你能举出实例吗?主见过,如漏斗、蒙古包师你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流生圆锥的表面是由一个圆面和一个曲面围成的师圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题新课讲解一、探索圆锥的侧面展开图的形状师(向学生展示圆锥模型)请大家先观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状生圆锥的侧面展开图是扇形师能说说理由吗?生甲因为数学知识是一环扣一环的,后面的知识是在前面知识的基础上学习的上节课的内容是弧长及扇形面积,本节课的内容是圆锥的侧面积,而弧长不是面积,所以我猜想圆锥的侧面展开图应该是扇形师这位同学用的虽然是猜想,但也是有一定的道理的,并不是凭空瞎想,还有其他理由吗?生乙我是自己实践得出结论的,我拿一个扇形的纸片卷起来,就得到了一个圆锥模型师很好,究竟大家的猜想是否正确呢?下面我就给大家做个演示(把圆锥沿一母线剪开),请大家观察侧面展开图是什么形状的?生是扇形师大家的猜想非常正确,既然已经知道侧面展开图是扇形,那么根据上节课的扇形面积公式就能计算出圆锥的侧面积,由于我们不能把所有圆锥都剖开,在展开图中的扇形的半径和圆心角与不展开图形中的哪些因素有关呢?这将是我们进一步研究的对象二、探索圆锥的侧面积公式师圆锥的侧面展开图是一个扇形,如图,设圆锥的母线(generating line)长为l,底面圆的半径为r,那么这个圆锥的侧面展开图中扇形的半径即为母线长l,扇形的弧长即为底面圆的周长2r,根据扇形面积公式可知s2rlrl因此圆锥的侧面积为s侧rl圆锥的侧面积与底面积之和称为圆锥的全面积(surfacearea),全面积为s全r2rl三、利用圆锥的侧面积公式进行计算投影片(38a)圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm)2分析:根据题意,要求纸帽的面积,即求圆锥的侧面积现在已知底面圆的周长,从中可求出底面圆的半径,从而可求出扇形的弧长在高h、底面圆的半径r、母线l组成的直角三角形中,根据勾股定理求出母线l,代入s侧rl中即可解:设纸帽的底面半径为r cm,母线长为l cm,则rl22.03cm,s圆锥侧rl5822.03638.87cm2638.872012777.4cm2所以,至少需要12777.4cm2的纸投影片(38b)如图,已知rtabc的斜边ab13cm,一条直角边ac5cm,以直线ab为轴旋转一周得一个几何体求这个几何体的表面积分析:首先应了解这个几何体的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和根据s侧r2或s侧rl可知,用第二个公式比较好求,但是得求出底面圆的半径,因为ab垂直于底面圆,在rtabc中,由oc、abbc、ac可求出r,问题就解决了解:在rtabc中,ab13cm,ac5cm,bc12cmocabbcac,rocs表r(bcac)(125) cm2课堂练习随堂练习课时小结本节课学习了如下内容:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算课后作业习题311活动与探究探索圆柱的侧面展开图在生活中,我们常常遇到圆柱形的物体,如油桶、铅笔、圆形柱子等,在小学我们已知圆柱是由两个圆的底面和一个侧面围成的,底面是两个等圆,侧面是一个曲面,两个底面之间的距离是圆柱的高圆柱也可以看作是由一个矩形旋转得到的,旋转轴叫做圆柱的轴,圆柱侧面上平行于轴的线段都叫做圆柱的母线容易看出,圆柱的轴通过上、下底面的圆心,圆柱的母线长都相等,并等于圆柱的高,圆柱的两个底面是平行的如图,把圆柱的侧面沿它的一条母线剪开,展在一个平面上,侧面的展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长,另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高例1如图(1),把一个圆柱形木块沿它的轴剖开,得矩形abcd已知ad18cm,ab30cm,求这个圆柱形木块的表面积(精确到1cm2)解:如图(2),ad是圆柱底面的直径,ab是圆柱的母线,设圆柱的表面积为s,则s2s圆s侧s2()22301625402204cm2所以这个圆柱形木块的表面积约为2204cm2板书设计38 圆锥的侧面积一、1探索圆锥的侧面展开图的形状;2探索圆锥的侧面积公式;3利用圆锥的侧面积公式进行计算二、课堂练习三、课时小结四、课后作业回顾与思考教学目标(一)教学知识点1掌握本章的知识结构图2探索圆及其相关结论3掌握并理解垂径定理4认识圆心角、弧、弦之间相等关系的定理5掌握圆心角和圆周角的关系定理(二)能力训练要求1通过探索圆及其相关结论的过程,发展学生的数学思考能力2用折叠、旋转的方法探索圆的对称性,以及圆心角、弧、弦之间关系的定理,发展学生的动手操作能力3用推理证明的方法研究圆周角和圆心角的关系,发展学生的推理能力4让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力(三)情感与价值观要求通过学生自己归纳总结本章内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展教学重点掌握圆的定义,圆的对称性,垂径定理,圆心角、弧、弦之间的关系,圆心角和圆周角的关系对这些内容不仅仅是知道结论,要注重它们的推导过程和运用教学难点上面这些内容的推导及应用教学方法教师引导学生自己归纳总结法教具准备投影片三张:第一张:(记作a)第二张:(记作d第三张:(记作c)教学过程回顾本章内容师本章的内容已全部学完,大家能总结一下我们都学过哪些内容吗?生首先,我们学习了圆的定义;知道圆既是轴对称图形,又是中心对称图形,并且有旋转不变性的特点;利用轴对称变换的方法探索出垂径定理及逆定理;用旋转变换的方法探索圆心角、弧、弦之间相等关系的定理;用推理证明的方法研究了圆心角和圆周角的关系;又研究了确定圆的条件;点和圆、直线和圆、圆和圆的位置关系;圆的切线的性质和判断;探究了圆弧长和扇形面积公式,圆锥的侧面积师很好,大家对所学知识掌握得不错本章的内容可归纳为三大部分,第一部分由圆引出了圆的概念、对称性,圆周角与圆心角的关系,弧长、扇形面积,圆锥的侧面积,在对称性方面又学习了垂径定理,圆心角、孤、弦之间的关系定理;第二部分讨论直线与圆的位置关系,其中包括切线的性质与判定,切线的作图;第三部分是圆和圆的位置关系这三部分构成了全章内容,结构如下:(投影片a)具体内容巩固师上面我们大致梳理了一下本章内容,现在我们具体地进行回顾一、圆的有关概念及性质生圆是平面上到定点的距离等于定长的所有点组成的图形定点为圆心,定长为半径圆既是轴对称图形,又是中心对称图形,对称轴是任意一条过圆心的直线,对称中心是圆心,圆还具有旋转不变性师圆的这些性质在日常生活中有哪些应用呢?你能举出例子吗?生车轮做成圆形的就是利用了圆的旋转不变性车轮在平坦的地面上行驶时,它与地面线相切,当它向前滚动时,轮子的中心与地面的距离总是不变的,这个距离就是半径把车厢装在过轮子中心的车轴上,则车辆在平坦的公路上行驶时,人坐在车厢里会感觉非常平稳如果车轮不是圆形,坐在车上的人会觉得非常颠二、垂径定理及其逆定理生垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧师这两个定理大家一定要弄清楚、不能混淆,所以我们应先对他们进行区分每个定理都是一个命题,每个命题都有条件和结论在垂径定理中,条件是:一条直径垂直于一条弦,结论是:这条直径平分这条弦,且平分弦所对的弧(有两对弧相等)在逆定理中,条件是:一条直径平分一条弦(不是直径),结论是:这条直径垂直于这条弦,并且平分弦所对的弧(也有两对弧相等)从上面的分析可知,垂径定理中的条件是逆定理中的结论,垂径定理中的一个结论是逆定理中的条件,在具体的运用中,是根据已知条件提供的信息来决定用垂径定理还是其逆定理,若已知直径垂直于弦,则用垂径定理;若已知直径平分弦,则用逆定理下面我们就用一些具体例子来区别它们(投影片b)1如图(1),在o中,ab、ac为互相垂直的两条相等的弦,odab,oeac,d、e为垂足,则四边形adoe是正方形吗?请说明理由2如图(2),在o中,半径为50mm,有长50mm的弦ab,c为ab的中点,则oc垂 直于ab吗?oc的长度是多少?师在上面的两个题中,大家能分析一下应该用垂径定理呢,还是用逆定理呢?生在第1题中,od、oe都是过圆心的,又odab、oeac,所以已知条件是直径垂直于弦,应用垂径定理;在第2题中,c是弦ab的中点,因此已知条件是平分弦(不是直径)的直径,应用逆定理师很好,在家能用这两个定理完成这两个题吗?生1解:odab,oeac,abac,四边形adoe是矩形acab,aead四边形adoe是正方形2解:c为ab的中点,ocab,在rtoac中,acab25mm,oa50mm由勾股定理得oc(mm)三、圆心角、弧、弦之间关系定理师大家先回忆一下本部分内容生在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等师下面我们进行有关练习(投影片c)1如图在o中,弦ab所对的劣弧为圆的,圆的半径为2cm,求ab的长生解:由题意可知的度数为120,aob120作ocab,垂足为c,则aoc60,acbc在rtabc中,acoasin602sin602ab2ac2(cm)四、圆心角与圆周角的关系生一条弧所对的圆周角等于它所对的圆心角的一半在同圆或等圆中,同弧或等弧所对的圆周角相等直径所对的圆周角是直角,90的圆周角所对的弦是直径五、弧长,扇形面积,圆锥的侧面积和全面积师我们经过探索,归纳出弧长、扇形面积、圆锥的侧面积公式,大家不仅要牢记公式,而且要把它的由来表述清楚,由于时间关系,我们在这里不推导公式的由来,只是让学生掌握公式并能运用生弧长公式l,是圆心角,r为半径扇形面积公式s或slrn为圆心角,r为扇形的半径,l为扇形弧长圆锥的侧面积s侧rl,其中l为圆锥的母线长,r为底面圆的半径s全s侧s底rlr2课时小结本节课我们复习巩固了圆的概念及对称性;垂径定理及其逆定理;圆心角、弧、弦、弦心距之间的关系;圆心角和圆周角的关系;弧长、扇形面积、圆锥的侧面积和全面积课后作业复习题 a组活动与深究弓形面积如图,把扇形oamb的面积以及oab的面积计算出来,就可以得到弓形amb的面积如图(1)中,弓形amb的面积小于半圆的面积,这时s弓形s扇形soab;图(2)中,弓形amb的面积大于半圆的面积,这时s弓形s扇形soab;图(3)中,弓形amb的面积等于半圆的面积,这时s弓形s圆例题:水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m,求截面上有水的弓形的面积(精确到0.01m2)解:如图,在o中,连接oa、ob,作弦ab的垂直平分线,垂足为d,交于点coa0.6,dc0.3,od0.60.30.3,aod60,ad0.3s弓形acbs扇形oacbsoab,s扇形oacb0.620.12(m2),soababod0.60.30.09(m2)s弓形acb0.120.090.22(m2)板书设计回顾与思考一、1圆的有关概念及性质;2垂径定理及其逆定理;3圆心角、弧、弦之间关系定理;4圆心角与圆周角的关系;5弧长、扇形面积、圆锥的侧面积和全面积二、课时小结三、课后作业回顾与思考(2)教学目标(一)教学知识点1了解点与圆,直线与圆以及圆和圆的位置关系2了解切线的概念,切线的性质及判定3会过圆上一点画圆的切线(二)能力训练要求1通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力2通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力3通过画圆的切线,训练学生的作图能力4通过全章内容的归纳总结,训练学生各方面的能力(三)情感与价值观要求1通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性2经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点教学重点1探索并了解点与圆、直线与圆、圆与圆的位置关系2探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线教学难点探索各种位置关系及切线的性质教学方法学生自己交流总结法教具准备投影片五张:第一张:(记作a)第二张:(记作b)第三张:(记作c)第四张:(记作d)第五张:(记作e)教学过程回顾本章内容师上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固具体内容巩固一、确定圆的条件师作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有什么特点下面请大家自己总结生经过一个点可以作无数个圆因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径就可以作一个圆由于圆心是任意的,因此这样的圆有无数个经过两点也可以作无数个圆设这两点为a、b,经过a、b两点的圆,其圆心到a、b两点的距离一定相等,所以圆心应在线段ab的垂直平分线上,在ab的垂直平分线上任意取一点为圆心,这一点到a或b的距离为半径都可以作一个经过a、b两点的圆因此这样的圆也有无数个经过在同一直线上的三点不能作圆经过不在同一直线上的三点只能作一个圆要作一个圆经过a、b、c三点,就要确定一个点作为圆心,使它到三点a、b、c的距离相等,到a、b两点距离相等的点在线段ab的垂直平分线上,到b、c两点距离相等的点应在线段b、c的垂直平分线上,那么同时满足到a、b、c三点距离相等的点应既在ab的垂直平分线上,又在bc的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心这个交点到a点的距离为半径,所以这样的圆只能作出一个师经过不在同一条直线上的四个点a、b、c、d能确定一个圆吗?生不一定,过不在同一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆上例题讲解(投影片a)矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么?师请大家互相交流生解:如图,矩形abcd的对角线ac和bd相交于点o四边形abcd为矩形,oaocoboda、b、c、d四点到定点o的距离都等于矩形对角线的一半a、b、c、d四点在以o为圆心,oa为半径的圆上二、三种位置关系师我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置关系下面我们逐一来回顾1点和圆的位置关系生点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内判断一个点是在圆的什么部位,就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内师总结得不错,下面看具体的例子(投影片b)1o的半径r5cm,圆心o到直线l的 距离dod3 m在直线l上有p、q、r三点,且有pd4cm,qd4cm,rd4cm,p、q、r三点对于o的位置各是怎样的?2菱形各边的中点在同一个圆上吗?分析:要判断某些点是否在圆上,只要看这些点到圆心的距离是否等于半径生1解:如图(1),在rtopd中,od3,pd4,op5r所以点p在圆上同理可知or5,oq5所以点r在圆内,点q在圆外2如图(2),菱形abcd中,对角线ac和bd相交于点o,e、f、g、h分别是各边的中点因为菱形的对角线互相垂直,所以aob、boc、cod、doa都是直角三角形,又由于e、f、g、h分别是各直角三角形斜边上的中点,所以oe、of、og、oh分别是各直角三角形斜边上的中线,因此有oeab,ofbc,ogcd,ohad,而abbccdda所以oeofogoh即各中点e、f、g、h到对角线的交点o的距离相等,所以菱形各边的中点在同一个圆上2直线和圆的位置关系生直线和圆的位置关系也有三种,即相离、相切、相交,当直线和圆有两个公共点时,此时直线与圆相交;当直线和圆有且只有一个公共点时,此时直线和圆相切;当直线和圆没有公共点时,此时直线和圆相离师总结得不错,判断一条直线和圆的位置关系有哪些方法呢?生有两种方法,一种就是从公共点的个数来判断,上面已知讨论过了,另一种是比较圆心到直线的距离d与半径的大小当dr时,直线和圆相交;当dr时,直线和圆相切;当dr时,直线和圆相离师很好,下面我们做一个练习(投影片c)如图,点a的坐标是(4,3),以点a为圆心,4为半径作圆,则a与x轴、y轴、原点有怎样的位置关系?分析:因为x轴、y轴是直线,所以要判断a与x轴、y轴的位置关系,即是判断直线与圆的位置关系,根据条件需用圆心a到直线的距离d与半径r比较o是点,a与原点即是求点和圆的位置关系,通过求oa与r作比较即可生解:a点的坐标是(4,3),a点到x轴、y轴的距离分别是3和4又因为a的半径为4,a点到x轴的距离小于半径,到y轴的距离等于半径a与x轴、y轴的位置关系分别为相交、相切由勾股定理可求出oa的距离等于5,因为oa4,所以点o在圆外师上面我们讨论了直线和圆的三种位置关系,下面我们要对相切这种位置关系进行深层次的研究,即切线的性质和判定生切线的性质是:圆的切线垂直于过切点的直径切线的判定是:经过直径的一端,并且垂直于这条直径的直线是圆的切线师下面我们看它们的应用(投影片d)1如图(1),在rtabc中,c90,ac12,bc9,d是ab上一点,以bd为直径的o切ac于点e,求ad的长2如图(2),ab是o的直径,c是o上的一点,caeb,你认为ae与o相切吗?为什么?分析:1由o与ac相切可知oeac,又c90,所以aoeabc,则对应边成比例,求出半径和oa后,由oaodad,就求出了ad2根据切线的判定,要求ae与o相切,需求bae90,由ab为o的直径得acb90,则bacb90,所以caebac90,即bae90师请大家按照我们刚才的分析写出步骤生1解:c90,ac12,bc9,由勾股定理得ab15o切ac于点e,连接oe,oeacoebcoaebac,即oeadab2odab2oe1522解:ab是o的直径,acb90cabb90caeb,cabcae90,即baaeba为o的直径,ae与o相切3圆和圆的位置关系师还是请大家先总结内容,再进行练习生圆和圆的位置关系有三大类,即相离、相切、相交,其中相离包括外离和内含,相切包括外切和内切,因此也可以说圆和圆的位置关系有五种,即外离、外切、相交、内切、内含师那么应根据什么条件来判断它们之间的关系呢?生判断圆和圆的位置关系;是根据公共点的个数以及一个圆上的点在另一个圆的内部还是外部来判断当两个圆没有公共点时有两种情况,即外离和内含两种位置关系当每个圆上的点都在另一个圆的外部时是外离;当其中一个圆上的点都在另一个圆的内部时是内含当两个圆有唯一公共点时,有外切和内切两种位置关系,当除公共点外,每个圆上的点都在另一个圆的外部时是外切;当除公共点外,其中一个圆上的点都在另一个圆的内部时是内切两个圆有两个公共点时,一个圆上的点有的在另一个圆的内部,有的在另一个圆的外部时是相交两圆相交只要有两个公共点就可判定它们的位置关系是相交师只有这一种判定方法吗?生还有用圆心距d和两圆的半径r、r之间的关系能判断外切和内切两种位置关系,当drr时是外切,当drr(rr)时是内切师下面我们还可以用d与r,r的关系来讨论出另外三种两圆的位置关系,大家分别画出外离、内含和相交这三种位置关系探索它们之间的关系,它们的关系可能是存在相等关系,也有可能是存在不等关系(让学生探索)大家得出结论了吗?是不是这样的当drr时,两圆外离;当rrdrr时,两圆相交;当drr(rr)时,两圆内含(投影片e)设o1和o2的半径分别为r、r,圆心距为d,在下列情况下,o1和o2的位置关系怎样?r6cm,r3cm,d4cm;r6cm,r3cm,d0;r3cm,r7cm,d4cm;r1cm,r6cm,d7cm;r6cm,r3cm,d10cm;r5cm,r3cm,d3cm;r3cm,r5cm,d1cm生(1)rr3cm4cmrr9cm,o1与o2的位置关系是相交;(2)drr,两圆的位置关系是内含;(3)dr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店住宿考试试题及答案
- 法律法规课件底色
- 2025年上海市疾病预防控制中心(上海市预防医学科学院)初级岗位公开招聘考前自测高频考点模拟试题及答案详解(新)
- 船艇机电操作模拟试题及答案
- 骨骼基本病变试题及答案
- 2025湖南株洲市田心街道社区卫生服务中心招聘见习人员4人考前自测高频考点模拟试题及答案详解(典优)
- 2025江苏南京市浦口区中医院招聘42人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025年上海市第一人民医院酒泉医院自主招聘专业技术人员30人模拟试卷及答案详解(易错题)
- 2025-2030工业软件市场增长潜力与竞争格局分析报告
- 2025-2030工业软件云化转型面临的挑战与对策研究报告
- 2025年中国眼视光行业发展深度分析与未来前景研究报告
- 出入境化妆品抽、采样作业指导书
- 中秋国庆双节活动主题
- 中考英语高频词汇大纲表(人教版)
- 血透患者跌倒的预防及管理
- 砼回弹强度自动计算表
- 医防融合知识讲座
- 培养幼儿的语言能力
- 《认识几种常见的岩石》说课稿、教案和教学设计
- 黑布林英语阅读初一年级16《柳林风声》译文和答案
- 广东省监理从业人员网络继续教育平台题库
评论
0/150
提交评论