高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布专题探究课六课件 理 新人教B版.ppt_第1页
高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布专题探究课六课件 理 新人教B版.ppt_第2页
高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布专题探究课六课件 理 新人教B版.ppt_第3页
高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布专题探究课六课件 理 新人教B版.ppt_第4页
高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布专题探究课六课件 理 新人教B版.ppt_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考导航1 概率与统计是高考中相对独立的一块内容 处理问题的方式 方法体现了较高的思维含量 该类问题以应用题为载体 注重考查学生的应用意识及阅读理解能力 化归转化能力 2 概率问题的核心是概率计算 其中事件的互斥 对立 独立是概率计算的核心 排列组合是进行概率计算的工具 统计问题的核心是样本数据的获得及分析方法 重点是频率分布直方图 茎叶图和样本的数字特征 3 离散型随机变量的分布列及其期望的考查是历来高考的重点 难度多为中低档类题目 特别是与统计内容的渗透 背景新颖 充分体现了概率与统计的工具性和交汇性 热点一常见概率模型的概率几何概型 古典概型 相互独立事件与互斥事件的概率 条件概率是高考的热点 几何概型主要以客观题形式考查 求解的关键在于找准测度 面积 体积或长度 相互独立事件 互斥事件常作为解答题的一问考查 也是进一步求分布列 期望与方差的基础 求解该类问题要正确理解题意 准确判定概率模型 恰当选择概率公式 例1 2017 全国 卷 为了监控某种零件的一条生产线的生产过程 检验员每天从该生产线上随机抽取16个零件 并测量其尺寸 单位 cm 根据长期生产经验 可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布n 2 1 假设生产状态正常 记x表示一天内抽取的16个零件中其尺寸在 3 3 之外的零件数 求p x 1 及x的数学期望 2 一天内抽检零件中 如果出现了尺寸在 3 3 之外的零件 就认为这条生产线在这一天的生产过程可能出现了异常情况 需对当天的生产过程进行检查 试说明上述监控生产过程方法的合理性 解 1 由题可知抽取的一个零件的尺寸落在 3 3 之内的概率为0 9974 从而零件的尺寸落在 3 3 之外的概率为0 0026 故x b 16 0 0026 因此p x 1 1 p x 0 1 0 997416 1 0 9592 0 0408 x的数学期望e x 16 0 0026 0 0416 2 如果生产状态正常 一个零件尺寸在 3 3 之外的概率只有0 0026 一天内抽取的16个零件中 出现尺寸在 3 3 之外的零件的概率只有0 0408 发生的概率很小 因此一旦发生这种情况 就有理由认为这条生产线在这一天的生产过程可能出现了异常情况 需对当天的生产过程进行检查 可见上述监控生产过程的方法是合理的 探究提高1 解第 1 题的关键是认清随机变量x服从二项分布 并能够应用e x np求解 易出现的失误是由于题干较长 不能正确理解题意 2 解第 2 题的关键是理解正态分布的意义 能够利用3 原则求解 易出现的失误有两个方面 一是不清楚正态分布n 2 中 和 的意义及其计算公式 二是计算失误 热点二概率统计与函数的交汇问题 教材vs高考 高考数学试题中对概率统计的考查有这样一类试题 题目非常新颖 又非常符合生活实际 这就是概率统计与函数的交汇问题 一般是以统计图表为载体 离散型随机变量的期望是某一变量的函数 利用函数的性质求期望的最值 例2 满分12分 2017 全国 卷 某超市计划按月订购一种酸奶 每天进货量相同 进货成本每瓶4元 售价每瓶6元 未售出的酸奶降价处理 以每瓶2元的价格当天全部处理完 根据往年销售经验 每天需求量与当天最高气温 单位 有关 如果最高气温不低于25 需求量为500瓶 如果最高气温位于区间 20 25 需求量为300瓶 如果最高气温低于20 需求量为200瓶 为了确定六月份的订购计划 统计了前三年六月份各天的最高气温数据 得下面的频数分布表 以最高气温位于各区间的频率估计最高气温位于该区间的概率 1 求六月份这种酸奶一天的需求量x 单位 瓶 的分布列 2 设六月份一天销售这种酸奶的利润为y 单位 元 当六月份这种酸奶一天的进货量n 单位 瓶 为多少时 y的数学期望达到最大值 教材探源本题第 2 问需对酸奶的需求量n进行分类讨论 以确定利润的最大值 这种分类讨论的思想源自于人教版教材选修2 3p63例3 5分 得分点5 2 由题意知 这种酸奶一天的需求量至多为500 至少为200 因此只需考虑200 n 500 当300 n 500时 若最高气温不低于25 则y 6n 4n 2n 若最高气温位于区间 20 25 则y 6 300 2 n 300 4n 1200 2n 若最高气温低于20 则y 6 200 2 n 200 4n 800 2n 因此e y 2n 0 4 1200 2n 0 4 800 2n 0 2 640 0 4n 8分 得分点6 当200 n 300时 若最高气温不低于20 则y 6n 4n 2n 若最高气温低于20 则y 6 200 2 n 200 4n 800 2n 因此e y 2n 0 4 0 4 800 2n 0 2 160 1 2n 11分 得分点7 所以n 300时 y的数学期望达到最大值 最大值为520元 12分 得分点8 得步骤分 抓住得分点的步骤 步步为赢 如第 1 问 指出随机变量x所有的可能取值 有则得1分 无则没有分 随机变量x的各个值对应的概率也是每个1分 列出其分布列是1分 也是每个步骤都有分 都是得分点 第 2 问也是如此 得关键分 解题过程的关键点 有则给分 无则没分 如第 2 问中 根据n的范围求e y 即当300 n 500时 e y 640 2n 当200 n 300时 e y 160 1 2n 若这两个关键运算结果有误 即使有计算过程和步骤也不得分 得计算分 解题过程中计算正确 是得满分的保证 如第 1 问中三个概率值的计算要正确 否则不得分 1 求离散型随机变量的均值和方差问题的一般步骤第一步 确定随机变量的所有可能值 第二步 求每一个可能值所对应的概率 第三步 列出离散型随机变量的分布列 第四步 求均值和方差 第五步 反思回顾 查看关键点 易错点和答题规范 2 概率统计与函数交汇问题的解题步骤第一步 通读题目 仔细审题 理解题意 第二步 根据题目所要解决的问题 确定自变量及其取值范围 第三步 构建函数模型 写出函数的解析式 第四步 利用函数模型 求解目标函数的最值或最优解 训练2 2018 青岛模拟 我国是世界上严重缺水的国家 城市缺水问题较为突出 某市政府为了鼓励居民节约用水 计划在本市试行居民生活用水定额管理 即确定一个合理的居民月用水量标准x 吨 用水量不超过x的部分按平价收费 超出x的部分按议价收费 为了了解全市市民用水量的分布情况 通过抽样 获得了100位居民某年的月均用水量 单位 吨 将数据按照 0 0 5 0 5 1 4 4 5 分成9组 制成了如图所示的频率分布直方图 1 求频率分布直方图中a的值 2 若该市政府希望使85 的居民每月的用水量不超过标准x 吨 估计x的值 并说明理由 3 已知平价收费标准为4元 吨 议价收费标准为8元 吨 当x 3时 估计该市居民的月平均水费 同一组中的数据用该组区间的中点值代替 解 1 由频率分布直方图 可得 0 08 0 16 a 0 40 0 52 a 0 12 0 08 0 04 0 5 1 解得a 0 30 2 前6组的频率之和为 0 08 0 16 0 30 0 40 0 52 0 30 0 5 0 88 0 85 而前5组的频率之和为 0 08 0 16 0 30 0 40 0 52 0 5 0 73 0 85 2 5 x 3 由0 3 x 2 5 0 85 0 73 解得x 2 9 因此 估计月用水量标准为2 9吨时 85 的居民每月的用水量不超过标准 3 设居民月用水量为t吨 相应的水费为y元 则 由题设条件及月均用水量的频率分布直方图 得居民每月的水费数据分组与频率分布表如下 根据题意 该市居民的月平均水费估计为1 0 04 3 0 08 5 0 15 7 0 20 9 0 26 11 0 15 14 0 06 18 0 04 22 0 02 8 42 元 热点三概率统计与统计案例的交汇问题近几年的高考数学试题对统计案例的考查一般不单独命题 而是与概率 随机变量的数学期望交汇命题 高考对此类题目的要求是能根据给出的或通过统计图表给出的相关数据求线性回归方程 了解独立性检验的思想方法 会判断两个分类变量是否有关 例3 2017 全国 卷 海水养殖场进行某水产品的新 旧网箱养殖方法的产量对比 收获时各随机抽取了100个网箱 测量各箱水产品的产量 单位 kg 其频率分布直方图如下 1 设两种养殖方法的箱产量相互独立 记a表示事件 旧养殖法的箱产量低于50kg 新养殖法的箱产量不低于50kg 估计a的概率 2 填写下面列联表 并根据列联表判断是否有99 的把握认为箱产量与养殖方法有关 3 根据箱产量的频率分布直方图 求新养殖法箱产量的中位数的估计值 精确到0 01 附 解 1 记b表示事件 旧养殖法的箱产量低于50kg c表示事件 新养殖法的箱产量不低于50kg 由题意知 p a p bc p b p c 旧养殖法的箱产量低于50kg的频率为 0 012 0 014 0 024 0 034 0 040 5 0 62 故p b 的估计值为0 62 新养殖法的箱产量不低于50kg的频率为 0 068 0 046 0 010 0 008 5 0 66 故p c 的估计值为0 66 因此 事件a的概率估计值为0 62 0 66 0 4092 2 根据箱产量的频率分布直方图得列联表 探究提高1 解答此类问题的关键是读懂所给的统计图表 从统计图表中得解题所需的相关数据 以频率为概率 结合互斥事件 对立事件的概率求解 2 应用独立性检验的方法解决问题 要特别注意计算 2时计算量大 小心出错 训练3 2018 梅州模拟 中石化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论