公务员考试行测辅导:数量关系“数列试错”实例详解【华图网校】.doc_第1页
公务员考试行测辅导:数量关系“数列试错”实例详解【华图网校】.doc_第2页
公务员考试行测辅导:数量关系“数列试错”实例详解【华图网校】.doc_第3页
公务员考试行测辅导:数量关系“数列试错”实例详解【华图网校】.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华图网校:公务员考试行测辅导:数量关系“数列试错”实例详解【华图网校】试误说是美国心理学家桑代克提出的著名学习理论。华图公务员考试研究中心的李委明老师在多年的公务员考试辅导教学实践中总结了公务员考试行政职业能力测验考试数量关系的“试误说”数列试错。在本文中李老师将通过实例来讲解“说列试错”的运用。在讲述“数列试错”的概念之前,我们先看看以下三个例子:【例1】1,2,(),67,131。A6B10C18D24【例2】1,2,(),22,86。A6B10C18D24【例3】1,2,(),37,101。A6B10C18D24【分析】以上三道题目的题干当中都含有五个数字,并且未知项都在正中间。因此,如果数列当中相邻数字两两作差,得到的次生数列(这个概念后面章节马上会讲到)当中的四个数中,中间两个是不知道的,需要我们“先猜后验”从而得到最终答案。巧合的是,以上三题两两作差得到同样的次生数列:1,(),(),64【例1解析】如果猜测该次生数列是一个等差数列,则应为形式:1,22,43,64,从而得到例1的答案,选择D:(提示:原数列两两之间做差)【例2解析】如果猜测该次生数列是一个等比数列,则应为形式:1,4,16,64,从而得到例2的答案,选择A:(提示:原数列两两之间做差)【例3解析】如果猜测该次生数列是一个立方数列,则应为形式:1,8,27,64,从而得到例3的答案,选择B:(提示:原数列两两之间做差)【总结】例1例3都是通过“相邻两项两两做差”得到同样的“次生数列”从而得到答案的,然而对这个“次生数列”的三种不同“猜测”分别对应以上三个不同的例题,其对应性需要我们进行“验算”来确定。因此,这三个例题告诉我们一个非常重要的道理:在考场上,我们需要进行很多大胆的“尝试”,但并非每一次尝试都会成功,有时候我们需要通过“数列试错”来剔除错误答案,并最终得到正确答案。下面,我们再来看看另外三个类似的例子:【例4】15,20,33,62,123,()。A194B214C248D278【例5】-1,6,25,62,123,()。A194B214C248D278【例6】3,2,27,62,123,()。A194B214C248D278【分析】以上三道题目的题干当中都含有六个数字,其中未知项是最后一项。这三道题都可以看作是“幂次修正数列”,其突破口就在最后两个已知数字上,即:62与123。在看以下解析之前,大家可以试着自己从这两个数字入手,通过寻找与之相邻的幂次数(相邻发散),找到各题的答案。【例4解析】如果猜测“123=128-5=27-5”的话,那么我们可以得到例4的答案为C:原数列248)基准数列:8163264128256(2的幂次数列)修正数列:741-2-5-8(等差数列)【例5解析】如果猜测“123=125-2=53-2”的话,那么我们可以得到例5的答案为B:原数列:-162562123(214)基准数列:182764125216(立方数列)修正数列:-2-2-2-2-2-2(常数数列)【例6解析】如果猜测“123=121+2=112+2”的话,那么我们可以得到例6的答案为A:原数列:322762123(194)基准数列:142564121196(平方数列)平方底数:-12581114(等差数列)修正数列:2-22-22-2(周期数列)【总结】例4例6都是通过相同的片断“62和123”入手,寻找与之相邻的特征幂次数,从而得到最终结果。虽然通过62我们只想到了64,但通过123我们却可以联想到三个不同的特征幂次数(前文“单数字发散”部分讲过126的发散,123与之类似),从而得到三道不同题目分别对应的答案,再一次证明“数列试错”的实战重要性。【补充】例4的“基准数列”其实也是一个“等比数列”;例5本身就是一个“三级等差数列”;例6的“基准数列”其实也是一个“二级等差数列”。大家不妨试试。【例1】小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行。每隔30分钟就有辆公共汽车从后面超过他,每隔20分钟就遇到迎面开来的一辆公共汽车。问:该路公共汽车每隔多少分钟发一次车?【分析】假设小明在路上向前行走了60(20、30的最小公倍数)分钟后,立即回头再走60分钟,回到原地。这时在前60分钟他迎面遇到6020=3辆车,后60分钟有6030=2辆车追上他。那么在两个60分钟里他共遇到朝同一方向开来的5辆车,所以发车的时间间隔为:602(3+2)=24(分)【例2】小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行。每隔30分钟就有辆公共汽车从后面超过他,每隔20分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小明步行速度的几倍?【分析】公共汽车的发车时间以及速度都是不变的,所以车与车之间的间隔也是固定不变的。根据每隔30分钟就有辆公共汽车从后面超过他,我们可以得到:间隔=30(车速-步速);根据每隔20分钟就遇到迎面开来的一辆公共汽车,我们可以得到:间隔=20(车速+步速)。所以:30(车速-步速)=20(车速+步速),化简可得:车速=5倍的步速。【注释】根据“车速=5倍的步速”和“间隔=30(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论