




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
多题一法专项训练(四)构造法一、选择题1已知三个互不重合的平面,m,n,且直线m,n不重合,由下列三个条件:m,n;m,n;m,n.能推得mn的条件是()a或b或c只有 d或2方程|x|cos x在(,)内()a没有根 b有且仅有一个根c有且仅有两个根 d有无穷多个根3已知数列an中,a11,an1,则数列an的通项公式为()a. b.c. d.4如图所示,已知三棱锥pabc,pabc2,pbac10,pcab2,则三棱锥pabc的体积为()a40 b80c160 d2405已知f(x)x3ax在1,)上是单调增函数,则a的最大值是()a0b1c2d3二、填空题6若a3,则方程x3ax210在(0,2)上恰有_个实根7已知实数x,y满足|x|y|4,则x2(y6)2的最小值是_8若不等式4x29y22kxy对一切正数x,y恒成立,则整数k的最大值为_三、解答题9求数列an的通项公式:(1)已知数列an满足:a12,an13an2(nn+);(2)已知数列an满足:a13,且an1(nn+)10设函数f(x)x(x1)ln(x1)(x1)(1)求f(x)的单调区间;(2)证明:当nm0时,(1n)m1时,证明:f(x);(2)当aln 21且x0时,证明:f(x)x22ax.12设数列an的前n项和snan2n1,nn+.(1)求首项a1与通项an;(2)设tn,nn+,证明:i3,则在(0,2)上f(x)0,f(2)94a0,y0得2k,又12,当且仅当4x29y2“”成立,2k12.则kmax3.答案:39解:(1)由已知,可得an13an2,所以an113(an1)故an1是一个首项为a111,公比为3的等比数列所以an113n1,故an3n11.(2)由已知,可得当nn+时,an1,两边取倒数,得2,即2,所以是一个首项为,公差为2的等差数列,其通项公式为(n1)22n.所以数列an的通项公式为an.10解:(1)f(x)1ln(x1)ln(x1),当f(x)0,即10),则g(x)由(1)知,f(x)x(1x)ln(1x)在(0,)上单调递减,所以x(1x)ln(1x)m0,所以g(n)g(m),即.得mln(1n)nln(1m),故(1n)m1时,要使f(x),即ex12x1,当且仅当ex2x,即ex2x0.令g(x)ex2x,则g(x)ex2.令g(x)0,即ex20,解得xln 2.当x(1,ln 2)时,g(x)ex20,故函数g(x)在ln 2,)上单调递增所以g(x)在(1,)上的最小值为g(ln 2)eln 22ln 22(1ln 2)0,所以在(1,)上有g(x)g(ln 2)0,即ex2x.故当x(1,)时,有f(x).(2)欲证f(x)x22ax,即ex1x22ax,也就是exx22ax10,可令u(x)exx22ax1,则u(x)ex2x2a.令h(x)ex2x2a,则h(x)ex2.当x(,ln 2)时,h(x)0,函数h(x)在(ln 2,)上单调递增所以h(x)的最小值为h(ln 2)eln 22ln 22a22ln 22a0.所以u(x)h(x)0,即u(x)在r上为增函数,故u(x)在(0,)上为增函数,所以u(x)u(0)而u(0)0,所以u(x)exx22ax10.即当aln 21且x0时,f(x)x22ax.12解:(1)由snan2n1,nn+得a1s1a14,所以a12.再由有sn1an12n(n2)将和相减得ansnsn1(anan1)(2n12n),(n2)整理得an2n4(an12n1),(n2)因而数列an2n是首项为a124,公比为4的等比数列,即an2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京市规划和自然资源委员会事业单位招聘55人考前自测高频考点模拟试题及一套参考答案详解
- 2025年哈尔滨市急救中心编制外合同制工作人员招聘5人模拟试卷完整参考答案详解
- 2025江西南昌动物园百花园管理所招聘3人模拟试卷及一套完整答案详解
- 2025福建福州市罗源县卫健系统事业单位招聘编内卫技人员41人模拟试卷及一套完整答案详解
- 2025中核集团中国核建春季校园招聘笔试题库历年考点版附带答案详解
- 2025中国建筑一局(集团)有限公司财务管理部合并财务报表管理岗招聘1人笔试题库历年考点版附带答案详解
- 美团安全知识培训内容课件
- 2025年初级会计《经济法基础》知识点:合同法的基本原则
- 2025医疗设备采购协议范本
- 2025现代化生产基地食堂外包协议
- 2025保密观知识竞赛题库(试题附答案25个)
- 2025-2026学年人教版(2024)初中生物八年级上册(全册)教学设计(附目录)
- 煤矿监管培训方案
- 企业反腐倡廉培训课件
- 湿疮湿疹中医护理查房
- 2025年6月新《中华人民共和国治安管理处罚法》全文+修订宣贯解读课件(原创内容丰富且全)
- DB31/T 1377.4-2022实验鸡和鸭第4部分:设施及环境
- 2025邮储银行面试题目及答案
- 他人借车免责协议书
- 城中村改造项目规划设计(仅供参考)
- 公司代经营合同范例
评论
0/150
提交评论