第二章_随机变量及其分布汇总.doc_第1页
第二章_随机变量及其分布汇总.doc_第2页
第二章_随机变量及其分布汇总.doc_第3页
第二章_随机变量及其分布汇总.doc_第4页
第二章_随机变量及其分布汇总.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章_随机变量及其分布例1 某公司有5万元资金用于投资开发项目如果成功,一年后可获利12%;一旦失败,一年后将失去全部资金的50%下边是过去200例类似项目开发的实施结果:投资成功:192次;投资失败:8次.则该公司一年后估计可获收益的期望是 (万元)解析:获得收益的概率分布为:E=0.476(万元).例2(2009年安徽卷)某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区B肯定是受A感染的对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是同样也假定D受A、B和C感染的概率都是在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望)分析一:X的所有可能取值为1,2,3;.例3 某运动员射击一次所得环数的分布如下:现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为(1)求该运动员两次都命中7环的概率;(2)求的分布列.解:(1)求该运动员两次都命中7环的概率为;(2)的可能取值为7、8、9、10;例4(2009山东卷理)在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为(1)求q的值;(2)求随机变量的数学期望E;(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,P(B)= q,根据分布列知:=0时=0.03,所以,q=0.8(2)当=2时,P1=0.75q()2=1.5q()=0.24当=3时,P2 =0.01,当=4时,P3=0.48,当=5时,P4=0.24例6(2008年广东卷)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元设1件产品的利润(单位:万元)为(1)求的分布列;(2)求1件产品的平均利润(即的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1,一等品率提高为70如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?解:(1)的所有可能取值有6,2,1,2;,故的分布列为:(2);(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为:依题意,E(x)4.73,即4.76x4.73,解得x0.03所以三等品率最多为3例5 某食品企业一个月内被消费者投诉的次数用表示,椐统计,随机变量的概率分布如下:()求a的值和的数学期望;()假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率解:()由概率分布的性质知,则的分布列为:()设事件表示“2个月内共被投诉2次”,事件表示“2个月内有一个月被投

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论