全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形该证明 平行四边形的定义是怎样的呢?证明平行四边形的方法哪些证明参考的地方。下面就是给大家的怎么证明平行四边形内容,希望大家喜欢。 在平行四边形ABCD中,AE,CF,分别是DAB、BCD的平分线,E、F点分别在DC、AB上,求证:四边形AFCE是平行四边形 证明:四边形ABCD为平行四边形; DCAB; EAF=DEA AE,CF,分别是DAB、BCD的平分线; DAE=EAF;ECF=BCF; EAF=CFB; AECF; ECAF 四边形AFCE是平行四边形 1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形 1、两组对边分别平行的四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形 2 1.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形. 3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形; (2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别平行的四边形是平行四边形;(4)两条对角线互相平分的四边形是平行四边形(5)两组对角分别相等的四边形为平行四边形(注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。)(第五条对,如果对角相等,那么邻角之和的二倍等于360,那么邻角之和等与180,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形)本段性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)平行四边形对边平行且相等。(2)平行四边形两条对角线互相平分。(3)平行四边形的对角相等,两邻角互补。(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)(5)平行四边形的面积等于底和高的积。(可视为矩形)(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(7)对称中心是两对角线的交点。 1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的四边形是平行四边形 在同一平面内有两组对边分别平行的四边形叫做平行四边形(parallelogram)。平行四边形一般用图形名称加依次四个顶点名称来表示,如图平行四边形记为平行四边形ABCD。 平行四边形判定标准 判定前提:在同一平面内 判定内容 (1)两组对边分别相等的四边形是平行四边形; (2)一组对边平行且相等的四边形是平行四边形; (3)两组对边分别平行的四边形是平行四边形; (4)两条对角线互相平分的四边形是平行四边形; (5)两组对角分别相等的四边形是平行四边形; 在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。在对课案的反复打磨期间,本人收获颇丰。 但有些环节中的处理做得不是很好,定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。探索判定定理时,安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给学生思考。 改进措施: 1、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。 2、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。 3、在课堂上放心地让学生去尝试错误,多些让学生自主思考。 4、对学生的学习与做题多些方法性的指导。 在以后的日常教学中,要有意识地进一步尝试和运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学养猪知识培训课件
- 2026年急救药品管理与临床应用规范精讲
- 2026年护理岗位风险动态评估与防护措施
- 2026年ICU患者谵妄评估工具应用与护理干预
- 3D打印设备操作培训协议(2026年)
- 养老机构托管合同2026年协议
- 小升初数学真题及答案
- 乡村医生考试试题及答案
- 3企业市场营销策划与执行指南(标准版)
- 粪便清运工春节假期安全告知书
- 云南师大附中2026届高三1月高考适应性月考卷英语(六)含答案
- 2023-2024学年八年级(上)期末数学试卷
- DB33T 1238-2021 智慧灯杆技术标准
- 福建省泉州市晋江市2023-2024学年八年级上学期期末考试数学试卷(含解析)
- 【读后续写】2021年11月稽阳联考读后续写讲评:Saving the Daisies 名师课件-陈星可
- 农贸市场突发事件应急预案
- 股东合作协议模板
- Y -S-T 732-2023 一般工业用铝及铝合金挤压型材截面图册 (正式版)
- GB/T 43829-2024农村粪污集中处理设施建设与管理规范
- 万科物业服务指南房屋和设施维修管理
- 高一英语完型填空10篇实战训练及答案
评论
0/150
提交评论