



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省冠县东古城镇中学九年级数学上册一元二次方程学案(无答案) 新人教版课题课型复习课授课时间2013年月 日执笔人审稿人总第 课时相关标准陈述会用配方法、公式法、分解因式法解简单的一元二次方程学习目标1了解能够利用一元二次方程解决有关实际问题并能根据问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力2.一元二次方程及其相关概念,会用配方法、公式法、评价活动方案根据方程的特点灵活选择解法。并在解一元二次方程的过程中体会转化等数学思想教学活动方案:【自主复习】1. 一元二次方程:只含有一个 ,且未知数的指数为 的整式方程叫一元二次方程。它的一般形式是 (其中 、 ) 它的根的判别式是= ;当0时,方程有 实数;当=0时,方程有 实数根;当0时,方程有 实数根;一元二次方程根的求根公式是 、(其中 )2一元二次方程的解法: 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法用配方法解一元二次方程:ax2bx+c=0(k0)的一般步骤是:化二次项系数为1,即方程两边同除以二次项系数;移项,即使方程的左边为二次项和一次项,右边为常数项;配方,即方程两边都加上 的绝对值一半的平方;化原方程为的形式;如果就可以用两边开平方来求出方程的解;如果n=0,则原方程无解 公式法:公式法是用求根公式求出一元二次方程的解的方法。它是通过配方推导出来的一元二次方程的求根公式是 注意:用求根公式解一元二次方程时,一定要将方程化为 。 因式分解法:用因式分解的方法求一元二次方程的根的方法叫做 它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:将方程右边化为0;将方程左边分解为两个一次因式的乘积;令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解3一元二次方程的注意事项: 在一元二次方程的一般形式中要注意,强调a0因当a=0时,不含有二次项,即不是一元二次方程如关于x的方程(k21)x2+2kx+1=0中,当k=1时就是一元一次方程了 应用求根公式解一元二次方程时应注意:化方程为一元二次方程的一般形式;确定a、b、c的值;求出b24ac的值;若b24ac0,则代人求根公式,求出x1 ,x2若b24a0,则方程无解 方程两边绝不能随便约去含有未知数的代数式如2(x4)2=3(x4)中,不能随便约去(x4) 注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:直接开平方法因式分解法公式法【典型例析】分析:根据方程的不同特点,应采用不同的解法。(1)宜用直接开方法;(2)宜用配方法;(3)宜用公式法;(4)宜用因式分解法或换元法。4. 解关于的方程: 分析:学会分类讨论简单问题,首先要分清楚这是什么方程,当1时,是一元一次方程;当1时,是一元二次方程;再根据不同方程的解法,对一元二次方程有无实数解作进一步讨论。5. 阅读下题的解答过程,请你判断其是否有错误,若有错误,请你写出正确答案已知:m是关于x的方程mx2 2xm0的一个根,求m的值 解:把x=m代人原方程,化简得m3=m,两边同时除以m,得m2 =1,所以m=l,把=l代入原方程检验可知:m=1符合题意,答:m的值是1【有效训练 】1. 用直接开平方法解方程,得方程的根为( )a. b. c. d. 2. 方程的根是( ) a0 b1 c0,1 d0,1 3. 设的两根为,且,则 。4. 已知关于的方程的一个根是2,那么 。5. 【反馈矫正】【作业布置】 1. 如果在1是方程x2+mx1=0的一个根,那么m的值为( ) a2 b3 c1 d22. 方程的解是( ) 3. 已知x1,x2是方程x2x3=0的两根,那么x12+x22的值是( ) a1 b5 c7 d、4. 关于x的方程的一次项系数是3,则k=_5. 关于x的方程 是一元二次方程,则a=_.6. 飞机起飞时,要先在跑道上滑行一 段路程,这种运动在物理中叫做匀加速直线运动,其
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度反馈绩效协议
- IT系统安全审计检查清单模板
- 家具产品购销与安装合同
- 2026届湖南省长沙市岳麓区湖南师范大学附中化学高二第一学期期中质量跟踪监视模拟试题含解析
- 雨露计划申请书
- 父母恩情重如山读理解父母有感650字(11篇)
- 岗位职责说明书
- 技术项目开发阶段性评审报告表
- 企业行政办公物资申请与采购模板
- 初中诗歌朗诵技巧指导:以静夜思为例教学教案
- 医疗废物与污水处理培训
- 康复科疾病护理
- 4S店员工职业卫生培训
- 地下通道水泵房管理制度
- 溺水患者急救培训
- 2026版步步高大一轮高考数学复习讲义第十章 §10.1 计数原理与排列组合含答案
- 人力公司营销策划方案
- 医院医疗用房管理制度
- 股权代持协议终止协议书
- 捡土豆装车合同协议书
- 国际压力性损伤溃疡预防和治疗临床指南(2025年版)解读
评论
0/150
提交评论