




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【全程复习方略】(陕西专用)2014高考数学 第八章 第五节 椭圆课时提升作业 文 北师大版一、选择题1.(2013商洛模拟)已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于()(a)(b)(c)(d)2.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆c:x2+y2-2x-15=0的半径,则椭圆的标准方程是()(a)+=1(b)+=1(c)+y2=1(d)+=13.(2013安康模拟)若m是2和8的等比中项,则圆锥曲线x2+=1的离心率是()(a)(b)(c)或(d)或4.已知椭圆:+=1(0bb0)的左焦点f1作x轴的垂线交椭圆于点p,f2为右焦点,若f1pf2=60,则椭圆的离心率为()(a)(b)(c)(d)6.(能力挑战题)以f1(-1,0),f2(1,0)为焦点且与直线x-y+3=0有公共点的椭圆中,离心率最大的椭圆方程是()(a)+=1(b)+=1(c)+=1(d)+=1二、填空题7.在平面直角坐标系xoy中,椭圆c的中心为原点,焦点f1,f2在x轴上,离心率为.过f1的直线l交c于a,b两点,且abf2的周长为16,那么c的方程为.8.已知点p是椭圆16x2+25y2=400上一点,且在x轴上方,f1,f2分别是椭圆的左、右焦点,直线pf2的斜率为-4,则pf1f2的面积是.9.分别过椭圆+=1(ab0)的左、右焦点f1,f2所作的两条互相垂直的直线l1, l2的交点在此椭圆的内部,则此椭圆的离心率的取值范围是.三、解答题10.(2013西安模拟)在平面直角坐标系中,已知曲线c上任意一点p到两个定点f1(-,0)和f2(,0)的距离之和为4.(1)求曲线c的方程.(2)设过(0,-2)的直线l与曲线c交于a,b两点,以线段ab为直径作圆.试问:该圆能否经过坐标原点?若能,请写出此时直线l的方程,并证明你的结论;若不能,请说明理由.11.(2013渭南模拟)已知椭圆c:+=1(ab0)的右顶点a为抛物线y2=8x的焦点,上顶点为b,离心率为.(1)求椭圆c的方程.(2)过点(0,)且斜率为k的直线l与椭圆c相交于p,q两点,若线段pq的中点横坐标是-,求直线l的方程.12.(能力挑战题)已知点p是圆f1:(x+)2+y2=16上任意一点,点f2与点f1关于原点对称.线段pf2的中垂线与pf1交于m点.(1)求点m的轨迹c的方程.(2)设轨迹c与x轴的两个左右交点分别为a,b,点k是轨迹c上异于a,b的任意一点,khx轴,h为垂足,延长hk到点q使得|hk|=|kq|,连接aq并延长交过b且垂直于x轴的直线l于点d,n为db的中点.试判断直线qn与以ab为直径的圆o的位置关系.答案解析1.【解析】选b.由题意得2a=2b,即a=b.又a2=b2+c2,所以有b=c,a=c,得离心率e=.2.【解析】选a.圆c的方程可化为(x-1)2+y2=16.知其半径r=4,长轴长2a=4,a=2.又e=,c=1,b2=a2-c2=4-1=3,椭圆的标准方程为+=1.3.【解析】选c.因为m是2和8的等比中项,所以m2=16,所以m=4.当m=4时,圆锥曲线为椭圆x2+=1,离心率为,当m=-4时,圆锥曲线为双曲线x2-=1,离心率为,综上选c.4.【解析】选d.由题意知a=2,所以|bf2|+|af2|+|ab|=4a=8.因为|bf2|+|af2|的最大值为5,所以|ab|的最小值为3,当且仅当abx轴时,取得最小值,此时a(-c,),b(-c,-),代入椭圆方程得+=1.又c2=a2-b2=4-b2,所以+=1,即1-+=1,所以=,解得b2=3,所以b=,选d.5.【解析】选b.由题意知点p的坐标为(-c,)或(-c,-),因为f1pf2=60,那么=,2ac=b2,这样根据a,b,c的关系式化简得到结论为.6.【思路点拨】由于c=1,所以只需长轴最小,即公共点p,使得|pf1|+|pf2|最小时的椭圆方程.【解析】选c.由于c=1,所以离心率最大即为长轴最小.点f1(-1,0)关于直线x-y+3=0的对称点为f(-3,2),设点p为直线与椭圆的公共点,则2a=|pf1|+|pf2|=|pf|+|pf2|ff2|=2.取等号时离心率取最大值,此时椭圆方程为+=1.7.【解析】根据椭圆焦点在x轴上,可设椭圆方程为+=1(ab0).e=,=.根据abf2的周长为16得4a=16,因此a=4,b=2,所以椭圆方程为+=1.答案:+=18.【解析】由已知f1(-3,0),f2(3,0),所以直线pf2的方程为y=-4(x-3),代入16x2+25y2=400,整理得76x2-450x+650=0,解得:x=或x=(因为x3,故舍去),又点p(x,y)在椭圆上,且在x轴上方,得16()2+25y2=400,解得y=2,=|f1f2|y=62=6.答案:69.【思路点拨】关键是由l1, l2的交点在此椭圆的内部,得到a,b,c间的关系,进而求得离心率e的取值范围.【解析】由已知得交点p在以f1f2为直径的圆x2+y2=c2上.又点p在椭圆内部,所以有c2b2,又b2=a2-c2,有c2a2-c2,即2c2a2,亦即:,00,k2,则x1+x2=,x1x2=,代入,得(1+k2)-2k+4=0.即k2=4,k=2或k=-2,满足式.所以,存在直线l,其方程为y=2x-2或y=-2x-2.11.【解析】(1)抛物线y2=8x的焦点为a(2,0),依题意可知a=2.因为离心率e=,所以c=.故b2=a2-c2=1,所以椭圆c的方程为:+y2=1.(2)直线l:y=kx+,由消去y可得(4k2+1)x2+8kx+4=0,因为直线l与椭圆c相交于p,q,所以=(8k)2-4(4k2+1)40,解得|k|.又x1+x2=,x1x2=,设p(x1,y1),q(x2,y2),pq中点m(x0,y0),因为线段pq的中点横坐标是-,所以x0=-,解得k=1或k=,因为|k|,所以k=1,因此所求直线l:y=x+.12.【解析】(1)由题意得,f1(-,0),f2(,0),圆f1的半径为4,且|mf2|=|mp|,从而|mf1|+|mf2|=|mf1|+|mp|=4|f1f2|=2,点m的轨迹是以f1,f2为焦点的椭圆,其中长轴2a=4,焦距2c=2,则短半轴b=1,椭圆方程为:+y2=1.(2)设k(x0,y0),则+=1.|hk|=|kq|,q(x0,2y0),oq=2,q点在以o为圆心,2为半径的圆上,即q点在以ab为直径的圆o上.又a(-2,0),直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商务咨询费合同范本
- 销售返利合作合同范本
- 婚庆合同范本简单版
- 保安公司终止合同范本
- 包子的分销合同范本
- 工程机电框架合同范本
- 能源设备采购合同范本
- 公司购买汽车合同范本
- 民间借款制式合同范本
- 小区楼房出售合同范本
- 慢性疾病管理与健康指导手册
- 2025年高中音乐教师招聘考试测试题及参考答案
- 建筑工地基孔肯雅热防控和应急方案
- 2025年高考山东卷物理试题讲评及备考策略指导(课件)
- 租房合同范本下载(可直接打印)
- 佳能-6D-相机说明书
- DZ∕T 0153-2014 物化探工程测量规范(正式版)
- 畜牧兽医法规课件
- 生物竞赛辅导 动物行为学第七章 行为发育(38)课件
- 《空中领航》全套教学课件
- 木栈道专项施工方案
评论
0/150
提交评论