简易吊车设计毕业论文.doc

简易吊车设计【11张CAD图纸+毕业论文】【手推式 移动起重机】

收藏

压缩包内文档预览:(预览前20页/共30页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:429802    类型:共享资源    大小:1.66MB    格式:RAR    上传时间:2015-05-07 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
简易 吊车 设计 全套 cad 图纸 毕业论文 答辩 优秀 优良
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763


目      录


1  绪论  ………………………………………………………………………(1)

1.1 吊车的历史 ……………………………………………………………… (1)

1.2 吊车国内外的研究现状 ………………………………………………… (1)

1.3 吊车的发展趋势   ………………………………………………………(2)

2  工作机构的设计…………………………………………………………(4)

2.1 钢丝绳的选择 ……………………………………………………………(4)

2.1.1 钢丝绳的种类 …………………………………………………………(4)

2.1.2  钢丝绳的型号…………………………………………………………(4)

2.1.3  钢丝绳直径的选择……………………………………………………(5)

2.2 卷筒和滑轮直径的选择 …………………………………………………(5)3  传动装置的设计和计算……………………………………………… (7)

3.1 计算卷筒的功率 ………………………………………………………… (7)

3.2 计算卷筒的转速 ………………………………………………………… (7)

3.3 电动机的选择 …………………………………………………………… (7)

3.3.1 电动机类型的选择  ………………………………………………… (7)

3.3.2 电动机转速的选择  ………………………………………………… (8)

3.3.3 电动机功率的选择  ………………………………………………… (8)

3.4 计算总传动比…………………………………………………………… (8)

3.5 确定传动方案,画出传动示意图……………………………………… (9)

3.6 分配传动比……………………………………………………………… (9)

3.7 计算效率。验算电动机的功率…………………………………………(10)

3.8 计算各轴的转速、功率和转矩…………………………………………(10)

3.9 制动器的选择……………………………………………………………(12)

3.10 传动机构的设计和计算 ……………………………………………… (13)

3.10.1 带传动 ……………………………………………………………… (13)

3.10.2 齿轮传动 …………………………………………………………… (15)

3.11 画出总体结构方案图 ………………………………………………… (16)

4  结构设计 ……………………………………………………………… (17)

4.1 初算各轴的最小直径……………………………………………………(17)

4.2 带轮的结构………………………………………………………………(18)

4.3 齿轮的结构………………………………………………………………(19)

4.4 卷筒的结构………………………………………………………………(20)

4.5 滑轮的结构………………………………………………………………(21)

4.6 升臂杆和支撑杆的结构…………………………………………………(21)

4.6.1 升臂杆和支撑杆的尺寸………………………………………………(21)

4.6.2 根据强度条件、决定升臂杆的材料和断面尺寸……………………(22)

4.6.3 根据强度条件,决定支撑杆的材料和断面尺寸……………………(25)

4.7 画制动轮装置和卷同装置的结构图 ……………………………………(26)

4.8 绘制吊车的总装配图 ……………………………………………………(26)

4.9 拆画重要零件图 …………………………………………………………(26)

5  设计小结 …………………………………………………………………(27)

 5.1 小结 ………………………………………………………………………(27)

 5.2 设计心得 …………………………………………………………………(27)

参考文献………………………………………………………………………(29)

致 谢……………………………………………………………………………(30)



摘要:本课题的目的就是设计一简易吊车来代替人力实现重物的搬运。该吊车的工作原理是:由电动机经带轮传动和一对开式齿轮传动,将运动和动力传给卷筒,再通过钢丝绳和滑轮组来提升重物。

通过任务书中的条件参数,设计计算相关的数据,选择钢丝绳的种类和型号,进而计算出卷筒和滑轮的直径,确定一些其它的标准零部件。在此基础上进行传动装置的设计和计算,完成其进行结构设计,工作主要包括完成了轴的设计、确定了带轮的结构、齿轮的结构、卷筒的结构、滑轮的结构 、伸臂杆和支撑杆的结构,绘制了绘制了吊车的总装配图、制动轮装置和卷筒装置的结构图,完成部分零件工作图的设计。


关键词:简易吊车  设计计算  结构设计


Abstract: The purpose of this project is to design a simple realization of the cable car to replace the human handling of heavy weights. The working principle of the cable car is: by the motor via a pulley drive and gear drive off, the movement and momentum to the drum, and then through the rope and pulleys to raise heavy objects group.

   Conditions through the parameters of the task book, design and calculation of relevant data, select the type and model of wire rope, and then calculated the diameter of the drum and pulley, to identify a number of other parts of the standards. Carried out on the basis of gear design and calculation, to complete its structural design, primarily include the completion of the design of the shaft to determine the structure of the pulley, the gear structure of the drum structure, block structure, under and the supporting bar of the structure, rendering a total mapping of the crane assembly, brake drum round of devices and device structure, the completion of the work of some parts of the design plans.


Keyword: Simple cable car  Calculation  Structural Design


                      Signature of Supervisor:


内容简介:
南 昌 航 空 大 学毕业设计(论文)任务书I、毕业设计(论文)题目: 简易吊车设计II、毕 业设计(论文)使用的原始资料(数据)及设计技术要求: 设计一移动式简易吊车,要求提升的最大重量为G=750公斤,提升的线速度为,提升的最大高度为适用于机械加工车间小范围内的起重和搬运。III、毕 业设计(论文)工作内容及完成时间:1. 收集资料、外文资料翻译、开题报告 (2周)2月23日-3月8日 2. 总体方案的确定 (1周)3月9日-3月15日 3. 参数确定及设计计算 (3周)3月16日-4月5日 4. 简易吊车装配图设计及零部件图设计 (7周)4月6日-5月24日 5. 撰写毕业设计论文 (4周)5月25日-6月19日 、主 要参考资料:1 璞良贵,纪名刚主编.机械设计.第七版.北京:高等教育出版社,20012孙桓,陈作模主编.机械原理.第六版.北京:高等教育出版社,20023 成大先主编.机械设计手册.北京:化学工业出版社,20044 赵学田主编.机械设计自学入门.北京:冶金工业出版社,19825 Ye Zhonghe, Lan Zhaohui. Mechanisms and Machine Theory. Higher Education Press, 2001.7 机械 系 机械设计制造及其自动化 专业 050313 班学生:熊园梅日期: 自 2009 年 2月16日 至2009年6 月 19日指导教师:助理指导教师(并指出所负责的部分):教研室主任: 附注:任务书应该附在已完成的毕业设计说明书首页。学士学位论文原创性声明本人声明,所呈交的论文是本人在导师的指导下独立完成的研究成果。除了文中特别加以标注引用的内容外,本论文不包含法律意义上已属于他人的任何形式的研究成果,也不包含本人已用于其他学位申请的论文或成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期:学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌航空工业学院可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 作者签名: 日期:导师签名: 日期:M. Suk D. GillisEffect of mechanical design of the suspension on dynamic loading processReceived: 2 July 2003 / Accepted: 24 February 2004 / Published online: 3 August 2005_ Springer-Verlag 2005Abstract: In designing a load/unload system utilized in hard disk drives, necessary care needs to be taken to ensure that the slider does not damage the disk surface during loading and unloading processes. However, a small deviation in the design point of the preload between the load-dome and flexure can lead to undesirableloading processes resulting in an adverse number of slider/disk contacts. In this study, we show that if the preload between the load-dome and flexure is too low, the slider can oscillate causing the corners of the slider to contact the disk multiple times even though the slider is a few microns away from the disk. In addition, the slider can be sucked down towards the disk resulting in a complete separation of the load-dome from the flexure assembly leading to uncontrolled loading conditions.This separation occurs while the suspension is still on the ramp, and thus no preload is exerted on the slider immediately following the separation. Consequently, the slider flies at a flying height higher than the design point until the gap between the load-dome and flexure closes. Hence, the suspension must be carefully designed to suppress slider oscillation and to ensure that the loaddome does not separate during the loading process.1 IntroductionOne of the requirements in designing a load/unload system utilized in hard disk drives is ensuring that the slider does not damage the disk surface during loading and unloading processes. Since it is difficult to avoid slider/disk contacts in entirety, however, the system is designed to minimize the number of slider/disk contact events and to lessen the consequences when contacts do occur. The likelihood of slider/disk contacts depends on the loading speed, disk speed, static attitude of the slider, air-bearing roughness, slider geometry, etc. For example, sliders with a large radius of curvature at its corners can eliminate disk damage by reducing the contact stress between the slider and disk surface (Suk and Gillis 1998). Many recent studies have considered the effect of suspension, limiter, and air-bearing designs on the robustness of the loading and unloading processes (Bogy and Zeng 2000; Hua et al. 2001; Liu and Zhu 2001; Zeng and Bogy 2000). However, most of these studies have primarily focused on the unloading process since this part of the sequence usually reveals interesting dynamic processes due to the effects of negative pressure airbearing designs. The negative pressure region of the airbearing resists the unloading action resulting in storage of potential energy in the flexure and suspension assembly.When the slider is finally pulled away from the disk and the potential energy is released, the slider can oscillate violently (Fig.1). On the other hand, for areasonably well-designed system, the loading process does not exhibit such a behavior. Hence, most have primarily investigated the unloading process giving onl a cursory attention to the more critical loading process. Most designers of load/unload systems will find that the loading process can be more troublesome compared to the unloading process. Besides potentially causing damage to the disk, other problems can be encountered during the loading process. For example, in some instances, the slider may never load to the designed flying height, but rather, load at flying heights on the order of 1 lm (Suk et al. 2004). In this paper, we show how a small deviation in the mechanical design of the flexure/suspension assembly can increase the probability of slider/disk contacts that can lead to a significant number of disk contacts in one single load cycle. Specifically, we show that a suspension system with low preload between the flexure and loaddome can lead to loading of the slider at an uncontrolled static attitude and velocity. The problems associated with this particular aspect of design can be easily identified by measuring the full-body capacitance during the loading process.2 Description of experimentThe slider loading dynamics was investigated using a laser-Doppler vibrometer (LDV), 62 kHz frame rate high-speed camera, and full-body capacitance. The experimental setup consists of a standard load/unload tester. The capacitance meter measures the full-body capacitance between the slider and disk while the slider is loading onto the disk, similar to the one used in (Suk et al. 2004). The slider was loaded onto and unloaded from the disk using a moving ramp while keeping the slider/suspension assembly fixed over the OD region of the disk. The vertical motion of the trailing edge of the slider was measured using an LDV. All tests were carried out using an 84 mm glass disk and a negative pressure bobsled type slider with the disk rotating at 10 krpm. The pitch-static attitude (PSA) of the sliders used in the experiment was between 1 and 2_. To show the effect of lack of preload between the flexure and load-dome, we chose two suspension assemblies that are essentially identical with the exception of the preload. Since the difference in the magnitude of the preload is difficult to measure, only the existence of substantial difference is verified. To do this, we mount the head suspension assembly with normal preload (NPHSA) onto the ramp. A small weight, that is sufficient to cause load-dome separation from the flexure, is then attached to the flexure. The amount of separation is measured with a properly positioned CCD camera.Similar measurement is made for a head suspension assembly with low preload (LP-HSA). Figures 2 and 3 show optical images of the load-dome and flexure taken under the same conditions for both NP-HSA and LPHSA, respectively. A greater load-dome separation from the flexure is observed for LP-HSA than the NP-HSA, confirming that LP-HSA has lower preload than NPHSA. 3 Results and discussion negative pressure sliders The slider loads onto the disk and then follows the runout of the disk as expected. The bottom plot in Fig.3 is the corresponding full-body capacitance measurement, which shows a single jump in the capacitance at the moment the slider loads onto the disk. A similar measurement for LP-HSA is shown in Fig.5. In this case, the slider oscillates before loading onto the disk unlike the case with a higher preload between the load-dome and flexure. Furthermore, the sliders vertical loading velocity suddenly increases when the slider is about 50 lm away from the disk. Associated with this sudden increase in the velocity, the capacitance measurement reveals multiple sharp transitions. Following the transitions, the capacitance does not reach the maximum value for another 1 ms or so. These observations indicate a problem, but it is difficult to ascertain the precise dynamics due to the low measurement bandwidth. Higher resolution measurement reveals that the slider contacts the disk multiple times (Fig.6)note that this exact behavior does not occur for every suspension assembly, but varies from one suspension to another. Figure6 shows simultaneous measurement of full-body capacitance and LDV during loading for LP-HAS immediately before fully loading onto the disk surface. Capacitance measurement shows some oscillation about 2 ms before a step-like jump is observed. Note that the average height of the slider during these oscillations is on the order of a few microns. At this height, the suspension preload (not the preload between the flexure and load-dome) is still supported by the ramp. The LDV measurement shows that the slider actually contacts the disk and bounces on-and-off the disk oscillating at the same frequency as that of the measurement made with the capacitance meter. The slider then settles into what appears to be a loaded position, but the capacitance measurement shows that the slider has not fully reached the nominal flying height positionthe capacitance measurement is slightly lower in magnitude than the final value. It takes another 4 ms or so before the slider finally loads fully into the nominal flying height. Surprisingly, LDV is also able to measure this latter process as well. The corresponding arm mounted acoustic emission measurement shows slider/disk contact Fig. 4 Top LDV measurement of the loading motion of the trailing edge of the slider for a system with normal preload between the load-dome and flexure. Bottom Full-body capacitance measurement, which shows a single sharp transition as the slider loads onto the diskverifying the LDV and capacitance measurements of sliderdisk contact (Fig.7). The slight delay in the AE signal is due to the fact the sensor is mounted at the suspension mount point, which is far removed from the location of the contact point. Another example of the loading process is shown in Fig.8 showing a similar behavior.The bounce followed by oscillations and slow settling into the nominal flying height has not been reported before. The reason for the observed deviation is due to the lack of preload between the slider and load-dome. During the loading process, the lack of preload results in oscillation of the slider as seen in Fig.5. This oscillation results in the slider corner contacting the disk multiple times when the slider comes close (on the order of a few microns) to the disk. Then, as the slider comes even closer to the disk, the negative suction force pulls the slider towards the disk separating the load-dome from the flexure. Under certain circumstances, the slider actually can also contact the disk during this phase of the process while the load/unload tab is still sliding on the ramp and the slider is a fraction of a micron away from the disk (Fig.9). This phenomenon is easy to see using a high-speed camera. A set of images captured with a high-speed camera for LP-HSA case is shown in Fig.10. It clearly shows load-dome separation from the flexure resulting in a partial loading on the disk while the load/unload tab is still on the ramp. In this particular case, we were unable to capture the slider/disk contacts using the high-speed camera. The initial phase of the measurements shown in Fig.5 is quite repeatable, i.e. the initial oscillation can be observed every time. However, the slider disk contact is not fully repeatable since this depends on many other parameters, such as, the vertical velocity of the disk at the time of loading and random excitation of the system due to airflow and mechanical vibrations. The suction force that causes the slider to jump towards the disk is due to a negative pressure force resulting from negative PSA of the slider relative to the disk surface. The relative PSA is usually negative while the suspension is on the ramp although the absolute PSA may be positive. As the suspension moves across the ramp, the relative PSA constantly changes ultimately reaching the absolute PSA value immediately before loading. During the time the relative PSA is negative, the negative pressure force will try to pull the slider towards the disk. If the sum of the flexure stiffness and the preload between the flexure and load-dome is less than this negative force exerted on the slider, the slider will move towards the disk at speeds higher than the desired speed separating the flexure from the load-dome. Furthermore, since the load-dome is separated from the flexure seen in Fig.10, there is no preload on the slider to push the slider towards the disk. As the gap between the load-dome and flexure closes and the preload of the suspension is transferred from the ramp to the slider, the slider is finally pushed into the nominal flying height as indicated by the final small increase in the capacitance and decrease in height as shown in the LDV measurements(Figs.4, 5, 7, 8). 4 Summary and conclusion Recent articles on load/unload have mainly dealt with the unloading process since the unload dynamics of negative pressure slider reveals an interesting behavior unlike the loading process. However, much more attention to detail is required for the loading process than the unloading process, since the affinity to cause disk damage is much greater during the former process than the latter. In this paper, we show that a small deviation in the design point of the preload between the load-dome and flexure can lead to adverse loadingprocesses resulting in an undesirable number of slider/ disk contacts.We show that if the preload between the load-dome and flexure is too low, the slider can oscillate and contact the disk multiple times even when the slider is a few microns away from the disk. Furthermore, we show that the slider can also be pulled down towards the disk completely separating the load-dome from the flexure assembly. This results in slider contacting the disk at an uncontrolled speed that can also lead to disk damage.The separation occurs while the suspension is still on the ramp, and thus there is no preload on the slider following the separation. This lack of preload allows the slider to fly at high flying heights until the gap between the flexure and load-dome closes. Hence, a prudent design of the suspension assembly is required to ensure that the combination of the flexure stiffness and the preload between the load-dome and suspension will be significant enough to defeat the negative pressure force keeping the load-dome attached to the suspension at all times and to suppress slider oscillations before loading.ReferencesBogy DB, Zeng QH (2000) Design and operating conditions for reliable load/unload systems. Tribol Int 33(56):357366Hua W, Liu B, Sheng G, Li J (2001) Further studies of unload process with a 9D model. IEEE Trans Magn 37(4):18551858Liu B, Zhu LY (2001) Experimental study on head disk interaction in ramp loading process. IEEE Trans Magn 37(4):18091813Suk M, Gillis D (1998) Effect of slider burnish on disk damage during dynamic load/unload. ASME J Tribol 120(2):332338Suk M, Ruiz O, Gillis D (2004) Load/unload systems with multiple flying heights (presented at the 2002 ASME/STLE international tribology conference, Cancu n, Mexico). ASME J Tribol 126(2):367371Zeng QH, Bogy DB (2000) Effects of certain design parameters on load/unload performance. IEEE Trans Magn 36(1): 140147M. Suk D. Gillis影响机械设计暂停动态加载过程收稿: 2003年7月2 /接受: 2004年2月24日/网上公布: 2005年8月3 _斯普林格2005年摘要:设计一个加载/卸载系统中使用的硬盘驱动器,必要时需要注意,确保在装货和卸货过程不会损害滑块碟片的表面。因为,在设计点的预负荷之间的穹顶和弯曲的一个小偏差可能会导致不良进程载入,造成一些滑块/磁盘不利的接触。在这项研究中,我们发现,如果预之间的负载圆顶和弯曲太低,滑块的摆动可能会造成角落的滑块接触磁盘过多,使滑杆远离磁盘几微米。此外,滑块可吸入下跌对磁盘造成了完全分离的负载圆顶,使柔性装配导致失控的负载条件。这种分离的情况仍然暂停在坡道,因此没有施加预压的滑块立即分离。因此,滑块苍蝇在飞行高度高于设计点,直到负载圆顶和弯曲之间的差距为零。因此,必须认真地暂停旨在制止滑块振荡,并确保不单独在负荷盘加载过程。1导言 其中一项要求设计一个加载/卸载系统中使用的硬盘驱动器是确保在装货和卸货过程滑块不会损害碟片表面。因为这是难以避免滑块/磁盘接触的全部内容,因为,该系统是为了尽量多的减少滑杆/磁盘接触事件和接触的后果的发生。滑块/磁盘接触发生接触的可能性取决于加载速度,硬盘速度,静态的态度滑块,空气轴承粗糙度,滑块几何等。例如滑块大曲率半径的弯道可以消除磁盘损害,降低接触应力之间的滑块和磁盘表面(Suk and Gillis 1998) 。许多最近的研究认为,影响暂停与限制器和空气轴承设计的鲁棒性和装卸过程有关(Bogy and Zeng 2000; Hua et al. 2001; Liu and Zhu 2001; Zeng and Bogy 2000) 。不过,这些研究主要集中在卸货的过程,因为这部分序列通常揭示有趣的动态过程的影响和负压空气轴设计。负压区域空气轴抗拒卸货行动导致的潜在能量储存在弯曲和悬挂装备中.当滑块终于脱离磁盘,势能释放,滑块振荡剧烈。另一方面,为合理的设计系统,加载过程并没有表现出这样的行为。因此,大多数国家都已经在主要调查卸载进程给予粗略注意更重要的加载过程。大多设计师的加载/卸载系统会发现,加载过程可以比卸载过程更麻烦,。除了可能造成损害的磁盘,其他问题都可以遇到的加载过程。例如,在某些情况下,滑块可能永远无法达到负荷的设计飞行高度,而是在飞行高度负荷的命令1流明(Suk et al. 2004) 。在本文中,我们显示一个小偏差的机械设计的弯曲/暂停大会可以增加概率滑块/磁盘接触,可能导致大量的磁盘接触单一负载周期。具体来说,我们表明,悬挂系统,低预弯曲之间和负荷盘可能导致装载的滑块不受控制静态的态度和速度。相关问题这方面的设计可以很容易地确定测量全身电容在加载过程。2描述的实验滑块载入中动态进行了研究用激光多普勒测振仪(激光多普勒) , 62千赫的帧速率的高速摄像头,全身电容。实验装置包括一个标准的加载/卸载测试。电容米措施全身电容之间的滑块和磁盘而滑块装上磁盘,一个类似于用在(Suk et al. 2004) 。滑块装上和卸下磁盘使用移动坡道,同时保持滑块/暂停固定的外径地区的磁盘。垂直运动的后缘的滑杆是用激光多普勒测量。所有的测试使用84毫米玻璃磁盘和负压雪橇型滑块与磁盘旋转10 krpm进行。球场静态态度(简称PSA )的滑块用于实验是介于1和2_ 。显示效果缺乏预弯曲之间和负载圆顶,我们选择两个暂停集会是基本相同,除预装。由于不同程度的预是难以衡量的,只有存在大量不同的是核实。要做到这一点,我们挂载头部悬挂大会正常预( NPHSA )进入坡道。一个小型的重量,这是足以造成负载穹顶脱离弯曲,然后附在弯曲。分离的数量来衡量一个适当的位置CCD相机。类似的测量是用于头部暂停低大会预装(唱片白蛋白) 。图2和图3显示的光学图像的负载圆顶和弯曲采取相同的条件下为NP一人血清白蛋白和LPHSA分别。更大的负载穹顶脱离弯曲是观察唱片白蛋白比NP一人血清白蛋白,确认唱片白蛋白低预比NPHSA 。 3结果与讨论负压滑块滑块负载到磁盘,然后按照跳动磁盘预期。底部的阴谋是在图3的相应全身电容测量,这表明在一个单一的跳转电容此刻滑块负载到磁盘。类似的测量唱片- HSA的是显示在图5 。在这种情况下,将滑块振荡在装货前到磁盘的情况不同,具有较高的预压荷载圆顶和弯曲。此外,滑盖的垂直加载速度突然增加时,滑块约为50流明远离磁盘。与此相关的突然增加,速度,电容测量显示多个急剧转变。继过渡,电容不能达到的最高值为另一个1毫秒左右。这些意见表明一个问题,但很难确定确切的动态,由于低测量带宽。更高分辨率的测量表明,滑块接触磁盘多次(图6 ) ,注意,这完全行为不会发生,每暂停大会,但不同暂停到另一个。图6显示同步测量全身电容和激光多普勒在装货唱片,已立即在完全加载到磁盘的表面。电容测量表明一些振荡约2毫秒之前的一个步骤样跳转得到遵守。请注意,平均身高滑块在这些振荡是对秩序的几个微米。在这一高度,暂停预(而不是预之间的柔性和负载圆顶)仍然是支持的坡道。在激光多普勒测量结果表明,滑块实际接触磁盘和弹跳上和从磁盘振荡在相同的频率,在测量与电容米。滑块然后解决什么似乎是一个加载的位置,但电容测量表明,该滑块没有完全达到了标称飞行高度位置的电容测量略低规模比最后的值。另需4毫秒或之前滑块最后负荷充分融入名义飞行高度。令人惊讶的是,激光多普勒也是能够衡量后者的进程。相应的胳膊安装声发射测量表明滑块/磁盘联络图。 4顶级激光多普勒测量负荷运动后缘的滑块的系统之间的正常预负荷圆顶和弯曲。底部全身电容测量,这显示出急剧转型滑块负载到磁盘核查激光多普勒和电容测量滑块磁盘接触(图7 ) 。稍有延误,声发射信号的原因是传感器安装在减震器点,这是远离的位
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:简易吊车设计【11张CAD图纸+毕业论文】【手推式 移动起重机】
链接地址:https://www.renrendoc.com/p-429802.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!