12.2.1 三角形全等的判定(SSS).doc_第1页
12.2.1 三角形全等的判定(SSS).doc_第2页
12.2.1 三角形全等的判定(SSS).doc_第3页
12.2.1 三角形全等的判定(SSS).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学内容1221 三角形全等的判定(SSS)课 型新授课时间分配教师讲授时间20学生活动时间20教学目标情感态度价 值 观通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想的良好思维品质,以及发现问题的能力知识能力1.经历探索三角形全等的条件的过程2初步掌握运用SSS判定两个三角形全等过程方法经历探索三角形全等条件的过程,体会利用操作、 归纳获得数学结论的过程教学重点通过观察和实验获得SSS,会运用SSS条件证明两个三角形全等教学难点探索三角形全等的条件,“分类讨论”的数学方法的初步渗透和逻辑思维能力的培养也是本节的难点.教学资源教材,参考书,考标,幻灯片,基础训练,备课组意见直尺、圆规、三角板、量角器、剪刀、硬纸片教法设计1.探究式教学 2.讲练结合法本课重点解决问题会运用SSS条件证明两个三角形全等及书写的规范表达.本 课学生所得会运用SSS条件证明两个三角形全等及书写的规范表达.课前准备学生预习准备复习,预习本课内容,发现自己的疑惑教师教学准备教参,考标,U盘,幻灯片,教案,和画图工具教学后记在课堂教学中,尽量为学生提供“做中学”的平台,不放过任何一个发展学生能力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,从而使课堂教学真正落实到学生的发展上. 为了使学生更好地掌握这部分内容,遵循了启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。运用多种手段展示了不同条件的两个三角形之间的关系,使学生直观地感受到并能概括出三角形全等的条件,同时让学生亲自动手操作,调动了学生的思维,锻炼了学生的动手能力.年 月 日教学过程(“三讲三不讲”:讲重点、难点,讲规律、拓展,讲易错、易漏、易混点;学生已会的不讲,学生自己能学会的不讲,讲了学生也不会的不讲)主备栏二次备课栏(手写)(一)复习提问,引入新课 1.全等三角形的定义; 2. 全等三角形的性质. 3. 要判定两个三角形全等需要几个条件?(二)导入新课活动1:探究 1只给一个条件(一组边相等或一组角相等),画出的两个三角形一定全等吗? 2给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做 三角形一内角为30,一条边为3cm 三角形两内角分别为30和50 三角形两条边分别为4cm、6cm 学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流 结果展示:1只给定一条边时: 只给定一个角时: 2给出的两个条件可能是:一边一内角、两内角、两边 可以发现按这些条件画出的三角形都不能保证一定全等 给出三个条件画三角形,你能说出有几种可能的情况吗? 归纳:有四种可能即:三内角、三条边、两边一内角、两内角一边 在刚才的探索过程中,我们已经发现三内角不能保证三角形全等下面我们就来逐一探索其余的三种情况活动2:已知三边作三角形 已知一个三角形的三条边长分别为6cm、8cm、10cm你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 1画图方法: 先画一线段AB,使得AB=6cm,再分别以A、B为圆心,8cm、10cm为半径画弧,两弧交点记作C,连结线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为AB=6cm,AC=8cm,BC=10cm 2以小组为单位,把剪下的三角形重叠在一起,发现都能够重合这说明这些三角形都是全等的3 特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个ABC,使AB=AB、AC=AC、BC=BC将ABC剪下,发现两三角形重合这反映了一个规律:作法:(略)三边对应相等的两个三角形全等,简写为“边边边”或“SSS” 活动3:定理的应用 用上面的规律可以判断两个三角形全等判断两个三角形全等的推理过程,叫做证明三角形全等所以“SSS”是证明三角形全等的一个依据请看例题 例如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架求证:ABDACD 师生共析要证ABDACD,可以看这两个三角形的三条边是否对应相等生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的三角形的这个性质叫做三角形的稳定性所以日常生活中常利用三角形做支架就是利用三角形的稳定性例如屋顶的人字梁、大桥钢架、索道支架等有前面的结论还可以得到作一个角等于已知角的方法。已知:AOB。求做:ABC,使ABC=AOB作法:略 (三)随堂练习1.如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件? 2课本P39练习 (四)课时小结本节课我们

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论