高考数学 第一章 空间几何体章末复习提升课件 新人教A版必修2.ppt_第1页
高考数学 第一章 空间几何体章末复习提升课件 新人教A版必修2.ppt_第2页
高考数学 第一章 空间几何体章末复习提升课件 新人教A版必修2.ppt_第3页
高考数学 第一章 空间几何体章末复习提升课件 新人教A版必修2.ppt_第4页
高考数学 第一章 空间几何体章末复习提升课件 新人教A版必修2.ppt_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章空间几何体 章末复习提升 知识网络整体构建 要点归纳主干梳理 题型探究重点突破 栏目索引 知识网络整体构建 返回 要点归纳主干梳理 1 空间几何体的结构特征 1 棱柱 有两个面互相平行 其余各面都是四边形 并且每相邻两个四边形的公共边都互相平行 棱锥 有一个面是多边形 其余各面都是有一个公共顶点的三角形 棱台是棱锥被平行于底面的平面所截而成的 这三种几何体都是多面体 2 圆柱 圆锥 圆台 球分别是由平面图形矩形 直角三角形 直角梯形 半圆面旋转而成的 它们都称为旋转体 在研究它们的结构特征以及解决应用问题时 常需作它们的轴截面或截面 3 由柱 锥 台 球组成的简单组合体 研究它们的结构特征实质是将它们分解成多个基本几何体 2 空间几何体的三视图与直观图 1 三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形 它包括正视图 侧视图 俯视图三种 画图时要遵循 长对正 高平齐 宽相等 的原则 注意三种视图的摆放顺序 在三视图中 分界线和可见轮廓线都用实线画出 不可见轮廓线用虚线画出 熟记常见几何体的三视图 画组合体的三视图时可先拆 后画 再检验 2 斜二测画法 主要用于水平放置的平面图形或立体图形的画法 它的主要步骤 画轴 画平行于x y z轴的线段分别为平行于x y z 轴的线段 截线段 平行于x z轴的线段的长度不变 平行于y轴的线段的长度变为原来的一半 三视图和直观图都是空间几何体的不同表示形式 两者之间可以互相转化 这也是高考考查的重点 根据三视图的画法规则理解三视图中数据表示的含义 从而可以确定几何体的形状和基本量 3 几何体的侧面积和体积的有关计算柱体 锥体 台体和球体的侧面积和体积公式 返回 题型探究重点突破 题型一空间几何体的三视图和直观图的应用三视图和直观图是空间几何体的不同表现形式 空间几何体的三视图可以使我们很好地把握空间几何体的性质 由空间几何体可以画出它的三视图 同样 由三视图可以想象出空间几何体的形状 两者之间可以相互转化 1 画三视图时 可以把垂直投影面的视线想象成平行光线从不同方向射向几何体所成的图象 可见的轮廓线 包括被遮挡但是可以经过想象透视的轮廓线 的投影就是所要画出的视图 2 检验所画视图是否符合 长对正 宽相等 高平齐 的基本特征 3 在旋转体的三视图中 一般有两个视图是相同的 并且这两个相同的视图中包含这个旋转体的轴截面 4 斜二测画法的画图规则可以简要说成 竖直 与z轴平行 或水平 与x轴平行 放置的线段画出时 长度 方向都不变 前后方向 与y轴平行 放置的线段画出时 与水平方向成45 或135 角 长度画成原长度的一半 仍表示原长度 在画直观图时 首先应该画出图形中决定其形状 位置和大小的一些关键点 对三视图的考查是高考命题的热点 每年都有涉及 主要以选择题和填空题两种形式考查 难度一般不大 解析答案 例1一个四棱锥的侧棱长都相等 底面是正方形 其正视图如图所示 则该四棱锥的侧面积和体积分别是 b 解析由正视图 知四棱锥的底面是边长为2的正方形 解析答案 跟踪训练1若某几何体的三视图如图所示 则这个几何体的直观图可以是 解析a项的正视图如图 1 b项的正视图如图 2 故均不符合题意 c项的俯视图如图 3 也不符合题意 故选d 答案d 题型二几何体的表面积和体积几何体的表面积及体积的计算是现实生活中经常遇到的问题 如制作物体的下料问题 材料最省问题 相同材料容积最大问题等 都涉及表面积和体积的计算 这里应注意各数量之间的关系及各元素之间的位置关系 特别是特殊的柱体 锥体 台体 在计算中要重视其中矩形 梯形及直角三角形等重要的平面图形的作用 对于圆柱 圆锥 圆台 要重视旋转轴所在的轴截面 底面圆的作用 例2如图所示 半径为r的半圆o的直径为直角梯形垂直于两底的腰 且分别切ab bc cd于点a e d 将半圆o与直角梯形abcd分别绕ad所在直线旋转一周 得到一个球和一个圆台 且球的表面积与圆台的侧面积之比为3 4 求圆台的体积 解析答案 解设圆台的上 下底面半径分别为r1 r2 母线长为l 则根据题意 得圆台的高ad 2r dc ce r1 ab be r2 oe r boc 90 oe bc 所以r1 r2 r2 l r1 r2 又因为s球 4 r2 s圆台侧 r1 r2 l 且s球 s圆台侧 3 4 解析答案 解设圆锥的底面半径为r 圆柱的底面半径为r 表面积为s 如图所示 易知 aeb aoc 题型三转化与化归思想例3边长为5cm的正方形efgh是圆柱的轴截面 则从e点沿圆柱的侧面到相对顶点g的最短距离是 解析答案 d 解析答案 跟踪训练3如图所示 圆台母线ab长为20cm 上 下底面半径分别为5cm和10cm 从母线ab的中点m拉一条绳子绕圆台侧面转到b点 求这条绳子长度的最小值 解析答案 解如图所示 作出圆台的侧面展开图及其所在的圆锥 连接mb p q分别为圆台的上 下底面的圆心 在圆台的轴截面中 rt opa rt oqb 设 bob 由扇形弧的长与底面圆q的周长相等 在rt b om中 即所求绳长的最小值为50cm 题型四割补法和等积法在求体积中的应用体积的求解与计算是立体几何学习的重点 其方法灵活多样 割补法和等积法是常用的技巧方法 1 将不规则的几何体通过分割或补形 将其转化为规则几何体的体积问题 割补法 2 三棱锥的任何一个面都可以作为它的底面 因此可以通过选择合适的底面 将其转化为底面积和高容易求的三棱锥的体积问题 等积法 例4如图所示 已知三棱柱abc a b c 侧面b bcc 的面积是s 点a 到侧面b bcc 的距离是a 求证 三棱柱abc a b c 的体积v sa 解析答案 证明方法一 分割法 如图所示 连接a b a c 这样就把三棱柱分割成了两个棱锥 解析答案 方法二 补全法 如图所示 将三棱柱abc a b c 补成一个四棱柱abd c a b dc 其中ac bd cd ab 即四边形abd c为一个平行四边形 显然三棱柱bd c b dc 的体积与原三棱柱abc a b c 的体积相等 以bcc b 为底面 点a 到面bcc b 的距离为高 显然补形后的四棱柱的体积为sa 解析答案 跟踪训练4如图所示 在棱台a1b1c1 abc中 4cm3 16cm3 求此棱台的体积 解设 s1 s abc s2 棱台的高为h 所以s1h 12 所以s2h 48 解析答案 又三棱锥c1 a1b1b与三棱锥c1 a1ab等高 而 所以v棱台 4 8 16 28 cm3 所以 8 cm3 返回 课堂小结 研究空间几何体 需在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论