全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
规范练(六)函数与导数问题1设f(x)ex(ax2x1)(1)若a0,讨论f(x)的单调性;(2)x1时,f(x)有极值,证明:当时,|f(cos )f(sin )|2.解(1)f(x)ex(ax2x1)ex(2ax1)aex(x)(x2),当a时,f(x)ex(x2)20,f(x)在r上单增;当0a时,由f(x)0,得x2或x;由f(x)0,得x2,f(x)在和(2,)上单调递增,在上单调递减当a时,由f(x)0,得x或x2;由f(x)0,得2x,f(x)在(,2)和)上单调递增,在上单调递减(2)证明x1时,f(x)有极值,f(1)3e(a1)0,a1,f(x)ex(x2x1),f(x)ex(x1)(x2)由f(x)0,得2x1,f(x)在2,1上单调递增,sin ,cos 0,1,|f(cos )f(sin )|f(1)f(0)e12.2已知mr,f(x)2x33x26(mm2)x.(1)当m1时,求f(x)在点(1,f(1)处的切线方程;(2)若m,2且关于x的不等式(m1)2(14m)f(x)20在区间k,0上恒成立,求k的最小值k(m)解(1)当m1时,f(x)2x33x2,f(x)6x26x.切线斜率为kf(1)12,f(1)5,所以切线方程为y12x7.(2)令f(x)6x26x6(mm2)0,可得x1m,x2m1,因为m,2,所以m1(m)2m10.当m10,且2m10,即m1时f(x)极大f(m)4m33m2,f(x)极小f(m1)(m1)2(14m)令g(m)f(x)极大4m33m2,则g(m)12m26m0.故g(m)在m1上单调递增,故g(m)g(1)120恒成立令h(x)f(x)(m1)2(14m),显然h(m1)f(m1)(m1)2(14m)0,令h(x0)h(m1)(x0m1),设x(m1)2(axb)2x33x26(mm2)x(m1)2(14m),比较两边系数得a2,b4m1,故x0.结合图象可知,要使(m1)2(14m)f(x)恒成立则只需x0k0即可,故kmink(m)x0;当m10即1m2时,同可知,g(m)f(x)极大4m33m2,又g(m),在1m2上单调递增,故g(m)g(2)20恒成立同理可知kmink(m)x0(1m2),综上可知,k(m).3已知函数f(x)ax.(1)若函数f(x)在(1,)上是减函数,求实数a的最小值;(2)若x1,x2e,e2,使f(x1)f(x2)a(a0成立),求实数a的取值范围解(1)因f(x)在(1,)上为减函数,故f(x)a0在(1,)上恒成立,所以当x(1,)时,f(x)max0,又f(x)a()2a()2a,设t,t(0,),则y(t)2a,故当t,即xe2时,f(x)maxa0,解得a,所以a的最小值为.(2)命题“若x1,x2e,e2,使f(x1)f(x2)a成立”,等价于“当xe,e2时,有f(x)minf(x)maxa”,由(1)知,当xe,e2时,f(x)maxa,f(x)maxa,问题等价于:“当xe,e2时,有f(x)min”10当a时,f(x)maxa0,f(x)在e,e2上为减函数,则f(x)minf(e2)ae2,故a.20当0a时,f(x)maxa0,由于f(x)()2a在e,e2上为增函数,故f(x)的值域为f(e),f(e2),即a,a,由f(x)的单调性和值域知,存在唯一x0e,e2,使f(x0)0,且满足:当xe,x0时,f(x)0,f(x)为减函数;当xx0,e2时,f(x)0.由f(x)minf(x0)ax0,x0e,e2,所以,a,与0a矛盾,不合题意综上所述,得a.4已知函数f(x)kexx2(其中kr,e是自然对数的底数(1)若k0,试判断函数f(x)在区间(0,)上的单调性;(2)若k2,当x(0,)时,试比较f(x)与2的大小;(3)若函数f(x)有两个极值点x1,x2(x1x2),求k的取值范围,并证明0f(x1)1.解(1)由f(x)kex2x可知,当k0时,由于x(0,),f(x)kex2x0,故函数f(x)在区间(0,)上是单调递减函数(2)当k2时,f(x)2exx2,则f(x)2ex2x,令h(x)2ex2x,h(x)2ex2,由于x(0,),故h(x)2ex20,于是h(x)2ex2x在(0,)为增函数,所以h(x)2ex2xh(0)20,即f(x)2ex2x0在(0,)恒成立,从而f(x)2exx2在(0,)为增函数,故f(x)2exx2f(0)2.(3)函数f(x)有两个极值点x1,x2,则x1,x2是f(x)kex2x0的两个根,即方程k有两个根,设(x),则(x),当x0时,(x)0,函数(x)单调递增且(x)0;当0x1时,(x)0,函数(x)单调递增且(x)0;当x1时,(x)0,函数(x)单调递减且(x)0.要使k有两个根,只需0k(1),如图所示,故实数k的取值范围是(0,)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025娄底市丘陵农机行业中小企业数字化转型实践样本
- 深度解析(2026)《GBT 14926.30-2001实验动物 兔轮状病毒检测方法》
- 2025国家统计局巴音郭楞调查队见习生招募备考考试题库及答案解析
- 2026广东江门市第三人民医院人才招聘44人参考笔试题库及答案解析
- 2025江西赣州市瑞金市总医院招聘工作人员5人备考笔试试题及答案解析
- 2026年福建农业职业技术学院单招职业适应性考试题库参考答案详解
- 2025浦发银行昆明分行招聘参考考试题库及答案解析
- 2026年嵩山少林武术职业学院单招职业倾向性考试题库附答案详解
- 2026年湖南艺术职业学院单招职业倾向性测试题库及参考答案详解
- 2026年温州大学单招职业适应性考试题库含答案详解
- 2026云南昆明铁道职业技术学院校园招聘4人考试笔试参考题库及答案解析
- 模板工程技术交底
- 2025广东广州南沙区南沙街道社区专职工作人员招聘32人考试笔试参考题库及答案解析
- 医疗器械全生命周期有效性管理策略
- 排水管道养护试题及答案
- 河南省文旅局的考试题及答案
- 课标考试2025年版《义务教育数学课程标准》测试卷试题库(和答案)
- 【MOOC】电子线路设计、测试与实验(二)-华中科技大学 中国大学慕课MOOC答案
- 高速公路半填半挖及填挖交界路基施工工法
- GB/T 25088-2010道路车辆牵引车和挂车之间的电连接器24 V 7芯辅助型(24S)
- 小学总课程表(义务教育课程设置)
评论
0/150
提交评论