




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1节分类加法计数原理与分步乘法计数原理 最新考纲1 理解分类加法计数原理和分步乘法计数原理 2 会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题 1 分类加法计数原理做一件事 完成它有n类办法 在第一类办法中有m1种不同的方法 在第二类办法中有m2种不同的方法 在第n类办法中有mn种不同的方法 则完成这件事共有n 种不同的方法 2 分步乘法计数原理做一件事 完成它需要分成n个步骤 做第一个步骤有m1种不同的方法 做第二个步骤有m2种不同的方法 做第n个步骤有mn种不同的方法 那么完成这件事共有n 种不同的方法 知识梳理 m1 m2 mn m1 m2 mn 3 分类加法和分步乘法计数原理 区别在于 分类加法计数原理针对 分类 问题 其中各种方法相互独立 用其中任何一种方法都可以做完这件事 分步乘法计数原理针对 分步 问题 各个步骤相互依存 只有各个步骤都完成了才算完成这件事 常用结论与微点提醒 1 切实理解 完成一件事 的含义 以确定需要分类还是需要分步进行 2 分类的关键在于要做到 不重不漏 分步的关键在于要正确设计分步的程序 即合理分类 准确分步 1 思考辨析 在括号内打 或 1 在分类加法计数原理中 两类不同方案中的方法可以相同 2 在分类加法计数原理中 每类方案中的方法都能直接完成这件事 3 在分步乘法计数原理中 每个步骤中完成这个步骤的方法是各不相同的 4 在分步乘法计数原理中 事情是分两步完成的 其中任何一个单独的步骤都能完成这件事 诊断自测 解析分类加法计数原理 每类方案中的方法都是不同的 每一种方法都能完成这件事 分步乘法计数原理 每步的方法都是不同的 每步的方法只能完成这一步 不能完成这件事 所以 1 4 均不正确 答案 1 2 3 4 2 从3名女同学和2名男同学中选1人主持主题班会 则不同的选法种数为 a 6b 5c 3d 2解析5个人中每一个都可主持 所以共有5种选法 答案b 3 教材练习改编 现有4种不同颜色要对如图所示的四个部分进行着色 要求有公共边界的两块不能用同一种颜色 则不同的着色方法共有 a 24种b 30种c 36种d 48种 解析需要先给c块着色 有4种结果 再给a块着色 有3种结果 再给b块着色 有2种结果 最后给d块着色 有2种结果 由分步乘法计数原理知共有4 3 2 2 48 种 答案d 4 5位同学报名参加两个课外活动小组 每位同学限报其中一个小组 则不同的报名方法有 种 用数字作答 解析每位同学都有2种报名方法 因此 可分五步安排5名同学报名 由分步乘法计数原理 总的报名方法共2 2 2 2 2 32 种 答案32 5 2018 阜新月考 已知某公园有5个门 从任一门进 另一门出 则不同的走法的种数为 用数字作答 解析分两步 第一步选一个门进有5种方法 第二步再选一个门出有4种方法 所以共有5 4 20种走法 答案20 考点一分类加法计数原理的应用 例1 1 满足a b 1 0 1 2 且关于x的方程ax2 2x b 0有实数解的有序数对 a b 的个数为 2 在所有的两位数中 个位数字大于十位数字的两位数的个数为 解析 1 当a 0时 b的值可以是 1 0 1 2 故 a b 的个数为4 当a 0时 要使方程ax2 2x b 0有实数解 需使 4 4ab 0 即ab 1 若a 1 则b的值可以是 1 0 1 2 a b 的个数为4 若a 1 则b的值可以是 1 0 1 a b 的个数为3 若a 2 则b的值可以是 1 0 a b 的个数为2 由分类加法计数原理可知 a b 的个数为4 4 3 2 13 2 当个位数字为2时 十位数字为1 共1个 当个位数字为3时 十位数字为1 2 共2个 当个位数字为4时 十位数字为1 2 3 共3个 当个位数字为9时 十位数字为1 2 3 4 7 8 共8个 由分类加法计数原理可知满足条件的两位数的个数为1 2 3 8 36 答案 1 13 2 36 规律方法分类标准是运用分类加法计数原理的难点所在 应抓住题目中的关键词 关键元素和关键位置 1 根据题目特点恰当选择一个分类标准 2 分类时应注意完成这件事情的任何一种方法必须属于某一类 并且分别属于不同种类的两种方法是不同的方法 不能重复 3 分类时除了不能交叉重复外 还不能有遗漏 如本例 1 中易漏a 0这一类 训练1 1 从集合 1 2 3 10 中任意选出三个不同的数 使这三个数成等比数列 这样的等比数列的个数为 a 3b 4c 6d 8 2 如图 从a到o有 种不同的走法 不重复过一点 解析 1 以1为首项的等比数列为1 2 4 1 3 9 以2为首项的等比数列为2 4 8 以4为首项的等比数列为4 6 9 把这4个数列的顺序颠倒 又得到另外的4个数列 所求的数列共有2 2 1 1 8个 2 分3类 第一类 直接由a到o 有1种走法 第二类 中间过一个点 有a b o和a c o共2种不同的走法 第三类 中间过两个点 有a b c o和a c b o共2种不同的走法 由分类加法计数原理可得共有1 2 2 5种不同的走法 答案 1 d 2 5 考点二分步乘法计数原理的应用 例2 1 2018 石家庄模拟 教学大楼共有五层 每层均有两个楼梯 由一层到五层的走法有 a 10种b 25种c 52种d 24种 2 2016 全国 卷 如图 小明从街道的e处出发 先到f处与小红会合 再一起到位于g处的老年公寓参加志愿者活动 则小明到老年公寓可以选择的最短路径条数为 a 24b 18c 12d 9 解析 1 每相邻的两层之间各有2种走法 共分4步 由分步乘法计数原理 共有24种不同的走法 2 分两步 第一步 从e f 有6条可以选择的最短路径 第二步 从f g 有3条可以选择的最短路径 由分步乘法计数原理可知有6 3 18条可以选择的最短路径 故选b 答案 1 d 2 b 规律方法 1 在第 1 题中 易误认为分5步完成 错选b 2 利用分步乘法计数原理应注意 要按事件发生的过程合理分步 即分步是有先后顺序的 各步中的方法互相依存 缺一不可 只有各步骤都完成才算完成这件事 训练2 1 用0 1 2 3 4 5可组成无重复数字的三位数的个数为 2 2018 合肥质检 五名学生报名参加四项体育比赛 每人限报一项 则不同的报名方法的种数为 五名学生争夺四项比赛的冠军 冠军不并列 则获得冠军的可能性有 种 解析 1 可分三步给百 十 个位放数字 第一步 百位数字有5种放法 第二步 十位数字有5种放法 第三步 个位数字有4种放法 根据分步乘法计数原理 三位数的个数为5 5 4 100 2 五名学生参加四项体育比赛 每人限报一项 可逐个学生落实 每个学生有4种报名方法 共有45种不同的报名方法 五名学生争夺四项比赛的冠军 可对4个冠军逐一落实 每个冠军有5种获得的可能性 共有54种获得冠军的可能性 答案 1 100 2 4554 考点三两个计数原理的综合应用 多维探究 命题角度1组数 组点 组线 组对及抽取问题 例3 1 如果一条直线与一个平面垂直 那么称此直线与平面构成一个 正交线面对 在一个正方体中 由两个顶点确定的直线与含有四个顶点的平面构成的 正交线面对 的个数是 a 48b 18c 24d 36解析在正方体中 每一个表面有四条棱与之垂直 六个表面 共构成24个 正交线面对 而正方体的六个对角面中 每个对角面有两条面对角线与之垂直 共构成12个 正交线面对 所以共有36个 正交线面对 答案d 命题角度2涂色 种植问题 例3 2 一题多解 如图所示 将一个四棱锥的每一个顶点染上一种颜色 并使同一条棱上的两端异色 如果只有5种颜色可供使用 求不同的染色方法种数 法二以s a b c d顺序分步染色 第一步 s点染色 有5种方法 第二步 a点染色 与s在同一条棱上 有4种方法 第三步 b点染色 与s a分别在同一条棱上 有3种方法 第四步 c点染色 也有3种方法 但考虑到d点与s a c相邻 需要针对a与c是否同色进行分类 当a与c同色时 d点有3种染色方法 当a与c不同色时 因为c与s b也不同色 所以c点有2种染色方法 d点也有2种染色方法 由分步乘法 分类加法计数原理得不同的染色方法共有5 4 3 1 3 2 2 420 种 规律方法 1 注意在综合应用两个原理解决问题时 一般是先分类再分步 在分步时可能又用到分类加法计数原理 注意对于较复杂的两个原理综合应用的问题 可恰当地列出示意图或列出表格 使问题形象化 直观化 2 解决涂色问题 可按颜色的种数分类 也可按不同的区域分步完成 例题中 相邻顶点不同色 要按a c和b d是否同色分类处理 训练3 1 一题多解 2018 青岛质检 如图所示 用4种不同的颜色涂入图中的矩形a b c d中 要求相邻的矩形涂色不同 则不同的涂法有 a 72种b 48种c 24种d 12种 2 如图所示 在连结正八边形的三个顶点而成的三角形中 与正八边形有公共边的三角形有 个 用数字作答 解析 1 法一首先涂a有4种涂法 则涂b有3种涂法 c与a b相邻 则c有2种涂法 d只与c相邻 则d有3种涂法 所以共有4 3 2 3 72种涂法 法二按要求涂色至少需要3种颜色 故分两类 一是4种颜色都用 这时a有4种涂法 b有3种涂法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 哪个网站有数学试卷
- 模考王数学试卷
- 南部县万年小学数学试卷
- 罗平县小考数学试卷
- 家居电商批发模式创新路径分析报告
- 边境生态安全评估分析报告
- 老外来中国做数学试卷
- 凌源高三联考数学试卷
- 期末考试试卷数学试卷
- 衢州初中数学试卷
- 医疗垃圾培训课件
- 小区真石漆修补方案(3篇)
- 急性食物中毒患者院前急救
- 2025年山东省高考招生统一考试高考真题生物试卷(真题+答案)
- 中医药健康服务规范课件
- DB4401-T 215-2023 井盖设施技术规范
- 医学实验室管理规范
- 2025公需课《人工智能赋能制造业高质量发展》试题及答案
- 远离文身 让青春不被“刺”痛 课件-2024-2025学年高一下学期预防青少年文身主题班会
- 打孔合同协议书
- 《AIGC应用实战:写作、绘图、视频制作、直播》课件 第七章 即梦的使用方法
评论
0/150
提交评论