




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程的概念教案一、教材分析:一元二次方程是人教版九年级上第二十二章第一节,是中学数学的主要内容,在初中代数中占有重要的地位实数与代数式的运算、一元一次方程是学习一元二次方程的基础,通过一元二次方程的学习,可以对上述内容加以巩固同时,一元二次方程也是以后学习(指数方程、对数方程、三角方程以及不等式、函数、二次曲线等内容)的基础此外,学习一元二次方程对其他学科也有重要意义本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。(二)教学目标教学目标知识技能1.理解一元二次方程概念是以未知数的个数和次数为标准的.2.掌握一元二次方程的一般形式以及三种特殊形式,能将一个一元二次方程化为一般形式3.理解二次根式的根的概念,会判断一个数是否是一个一元二次方程的根过程方法1.通过根据实际问题列方程,向学生渗透知识来源于生活.2.通过观察,思考,交流,获得一元二次方程的概念及其一般形式和其它三种特殊形式.3.经历观察,归纳一元二次方程的概念,一元二次方程的根的概念,情感态度通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情教学重点一元二次方程的概念,一般形式和一元二次方程的根的概念教学难点通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念二、教法与学法分析:教法分析:针对九年级学生复习时的知识结构和心理特征,本节课可选择引导探索归纳法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,归纳总结。这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:复习引入新知探讨问题解决课堂练习课堂小结布置作业六部分。学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,回顾和获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力求体现“问题情景-数学模型-概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过直观形象的观察与演示,从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。 三、教学过程设计教学过程设计教学程序及教学内容师生行为设计意图一、复习引入1、什么是方程?2、什么是一元二次方程?二、探究新知l 探究l 问题一. 有一块长100cm,宽50cm的铁皮,在它的四周各减去一个同样大的正方形,然后制作成一个无盖的底面积为3600cm2的盒子,切去的正方形的边长应为多少?问题二 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?概念归纳:1.一元二次方程定义:分析:首先它是整式方程,然后未知数的个数是1,最高次数是2.2.一元二次方程的一般形式:分析:.为什么规定0?.方程左边各项之间的运算关系是什么?关于x的一元二次方程 ax2bxc0 (a、b、c是已知数,a0)的各项分别是什么?各项系数是什么?分析:类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号.l 一元二次方程的根的概念1.下面哪些数是方程x2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,4总结一元一次方程与一元二次方程的区别3、 例题讲解例1、下列哪些是一元二次方程例2、将方程3x(x-1)=5(x+2)化为一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。例3、 例3、方程(2a4)x2 2bx+a=0, 在什么条件下此方程为一元二次方程? 在什么条件下此方程为一元一次方程?解:a=2 且 b 0 时是一元一次方程; 当 2a4,即a 2 时是一元二次方程。四、课堂训练1.课本练习2补充:选择题1.方程(m1)x2mx1=0为关于x的一元二次方程则m的值为A 任何实数 B m0 C m1 D m0 且m1 2.关于x的方程中一定是一元二次方程的是 A ax2bxc0 B mx2xm20 C (m1)x2(m1)2 D (m21) x2m20例4 已知关于x的一元二次方程 (m1)x23x5m40有一根为2,求m。1.当m-时,方程x2(m1)xm1有解x02.下面哪些数是方程 x-x-6=0 的根? -4 -3 -2 -1 0 1 2 3 43. 你能写出方程 x-x=0 的根吗?4. 梯度练习五、小测六、小结归纳1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数.2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根.七、作业设计教材P4T123师生一起回顾,生回答问题学生读题找等量关系列方程.学生观察所列方程整理后的特点,把握方程结构,初步感知一元二次方程概念.学生尝试叙述,然后师生归纳师生分析概念和一般形式.小组讨论学生根据相关概念作答,复习巩固.学生类比一元一次方程的解尝试叙述学生思考,讨论完成,学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正小组讨论回顾旧知易于学生接受创设学生感兴趣情景唤醒学生学习热情类比一元一次方程的根的概念获得一元二次方程的根的概念培养学生自主探究精神巩固所学学生对方程概念不准确 例ax2+bx+c=0不是一元二次方程当标明a、b、c是常数时才为一元二次方程培养计算能力进一步熟练一元二次方程有关概念四、教学评价根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识和学生对待学习的态度是否积极,而且注重引导学生尝试从不同角度分析和解决问题。五、板书设计22.1一元二次方程 定义:一元二次方程: 等号两边都是整式,只含有一个未知数, 例: 未知数最高次数是1,这样方程,叫一元一次方程。 一元二次方程的解:使一元二次方程左右两边相等的未知数的值。6、 教学反思: 本节课教学环节设计紧扣,小组讨论比较热情,但是小组讨论没有新的知识或者质疑产生,也就是说小组讨论没有深度,日后我
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业机器人柔性制造系统成本效益分析报告
- 主管护师(中级)考试黑钻押题含答案详解【突破训练】
- 数字化转型中的文化适应-洞察及研究
- 三农村生态环境保护规划纲要
- 汽车行业智能汽车制造与质量监控方案
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 重难点自考专业(市场营销学)(夺冠系列)附答案
- 重难点解析青岛版9年级数学下册期末测试卷附完整答案详解(各地真题)
- 新能源产业2025年研发投入产出分析报告:技术创新驱动因素
- 主管护师(中级)试题附参考答案详解【典型题】
- 2025年秋季学期第一次中层干部会议上校长讲话:凝心聚力明方向沉心落力干实事
- 医院患者身份识别核查流程规范
- 2025年北京市综合评标专家库专家考试历年参考题库含答案详解(5套)
- 2025年全国特种设备安全管理人员A证考试题库(含答案)
- 烟酒行经营合作合同范本
- 第23课 全民族抗战与抗日战争的胜利 2024-2025学年中职高一上学期高教版
- DGJ08-81-2015 现有建筑抗震鉴定与加固规程
- 《人为因素与航空法规》课件(共九章)
- 部编新课标培训课件
- 非工作时间行为协议
- 老年病人麻醉管理
评论
0/150
提交评论