全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
万全县第三初级中学七年级数学备课组教案课题名称勾股定理1主备人张福兵 杜秀荣审批人教学目标1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理.2培养在实际生活中发现问题总结规律的意识和能力.3介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习教学重、难点1重点:勾股定理的内容及证明.2难点:勾股定理的证明.课堂类型新授课时1授课教师教学过程:一、课前预习1、直角ABC的主要性质是:C=90(用几何语言表示)(1)两锐角之间的关系: (2)若D为斜边中点,则斜边中线 (3)若B=30,则B的对边和斜边: 2、(1)、同学们画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。(2)、再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。问题:你是否发现+与,+和的关系,即+=,+=,二、自主学习思考:(1) 观察图11。A的面积是_个单位面积;B的面积是_个单位面积;C的面积是_个单位面积。 (图中每个小方格代表一个单位面积)(2)你能发现图11中三个正方形A,B,C的面积之间有什么关系吗?图12中的呢?(3)你能发现图11中三个正方形A,B,C围成的直角三角形三边的关系吗?(4)你能发现课本图13中三个正方形A,B,C围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。由此我们可以得出什么结论?可猜想:命题1:如果直角三角形的两直角边分别为a、b,斜边为c,那么_。三、合作探究勾股定理证明:方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。S正方形_方法二;已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=_右边S=_左边和右边面积相等,即 化简可得 。勾股定理: 。四、课堂练习1、在RtABC中, ,(1)如果a=3,b=4,则c=_;(2)如果a=6,b=8,则c=_;第4题图S1S2S3(3)如果a=5,b=12,则c=_;(4) 如果a=15,b=20,则c=_. 2、下列说法正确的是()A.若、是ABC的三边,则B.若、是RtABC的三边,则C.若、是RtABC的三边, 则D.若、是RtABC的三边, ,则3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A斜边长为25 B三角形周长为25 C斜边长为5 D三角形面积为204、如图,三个正方形中的两个的面积S125,S2144,则另一个的面积S3为_ 5、一个直角三角形的两边长分别为5cm和12cm,则第三边的长为 五、课堂小结1、什么勾股定理?如何表示?2、勾股定理只适用于什么三角形?六、课堂小测1在RtABC中,C=90,若a=5,b=12,则c=_;若a=15,c=25,则b=_;若c=61,b=60,则a=_;若ab=34,c=10则SRtABC=_。2、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为 3、一个直角三角形的两边长分别为3cm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械制造业安全操作规范试题及答案详解
- 康复科心理测试常见误区及正确做法
- 经济金融投资模拟题与答案解析
- 环境科学知识问答及答案分析
- 机器人探索之旅少儿知识测试与答案指南
- 环保工程师实战指南废水处理技能测试答案集
- 开学复习计划表与测试指导手册
- T∕CISA 528-2025 AlNiCo45 6铸造永磁合金
- 2025年低空经济无人机载货能力报告
- 惠安馆考试复习策略与计划
- 网络安全市场2025年市场竞争格局变化可行性分析报告
- PRP技术治疗骨关节疼痛
- 口腔门诊护士培训课件
- 高压用电安全培训课件
- 2025至2030中国高模量碳纤维行业产业运行态势及投资规划深度研究报告
- 轮机安全操作培训内容课件
- 2025年兰州市初中语文学业水平考试卷附答案解析
- 2026届安徽省江南十校化学高一第一学期期中考试模拟试题含解析
- 2025年沈阳市事业单位教师招聘考试教育心理学试题
- 民警法制培训课件
- 酒店行业员工绩效考核方案模板
评论
0/150
提交评论