山东省济阳县竞业园学校中考数学一轮复习 圆的性质导学案(无答案).doc_第1页
山东省济阳县竞业园学校中考数学一轮复习 圆的性质导学案(无答案).doc_第2页
山东省济阳县竞业园学校中考数学一轮复习 圆的性质导学案(无答案).doc_第3页
山东省济阳县竞业园学校中考数学一轮复习 圆的性质导学案(无答案).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆的性质学导目标学习目标(认真阅读两遍,圈点、标画其中的关键词并进行补充!)1.认识圆的轴对称性和中心对称性以及圆心角、弧、弦、弦心距之间相等关系的定理,知道点与圆的位置关系;理解垂径定理、圆周角和圆心角定理,明确确定圆的条件.2.能借助各组量之间的关系进行计算和证明,能熟练应用垂径定理.3.体会和理解研究几何图形的各种方法,体会分类、归纳等数学方法.学导重点及方法重难点分析圆是一种特殊的几何图形,利用其对称性可以得到很多相关的定理,把圆的知识转化为等腰三角形和直角三角形的相关知识进行解决;同时在圆中还存在很多相等或有关系的量也是学习的重点。本节课的难点是垂径定理的应用和圆心角与圆周角关系的灵活转化.问题预设问题导读:认真看课本九年级下册第一章的内容,完成课后习题,解答以下问题.点与圆有几种位置关系?请说明判断的方法.2.圆的对称性有哪些(说明对称轴和对称中心)?垂径定理的条件和结论分别是什么?在推论中应特别注意什么?3.在应用圆心角、弧、弦、弦心距这几组量的关系时应特别注意什么?4.“一条弧所对的圆周角等于它所对的圆心角的一半”,在证明时分了哪几种情况?这一定理的推论有哪些?5.确定圆的条件是什么?(请总结)三角形外心的特点是什么?6.本单元常用的辅助线有哪些?说明其用法7.垂径定理和确定圆的条件在生活中有哪些应用?过 程时控学导内容设计情境创设2分钟18000年前的山顶洞人用一种尖状的石器来钻孔,石器的尖是圆心,它的宽度的一半就是半径,这样以同一个半径和圆心一圈圈地转就可以钻出一个圆的孔。到了陶器时代,许多陶器都是圆的。古代人还发现圆的木头滚着走比较省劲。大约在6000年前,美索不达米亚人,做出了世界上第一个轮子圆的木轮。约在4000年前,人们将圆的木轮固定在木架上,这就成了最初的车子。会作圆并且真正了解圆的性质,却是在2000多年前,是由我国的墨子给出圆的概念的:“一中同长也。”意思是说,圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得给圆下定义要早100年.目标咀嚼2分钟1阅读老师给出的目标对老师的目标进行圈点勾画其中的关键词,能用自己的语言描述出来2同伴之间互相讲述自己的个性目标,并互相补充、监督使目标更明确。3教师根据预设及现场学生精力集中情况提问35个学生,教师强调重点应该掌握的知识和提高的技能。(提问学生时要分层差、中、好各有一个能将本节课的目标补充完整)自学指导10分钟老师:同学们明确目标后利用10分钟时间再次阅读八年级上册第六章一次函数的内容:第一:任务是 带着小组问题围绕本节课目标去读文本,完善导读单中的问题,解决自己的自学问题; 分析例题和习题发现个人新的问题,补充在导读单中。第二:方法是结合具体的问题理解一次函数的概念; 结合具体的题目分析求一次函数表达式的方法;结合具体的题目分析求一次函数表达式的步骤及应注意的问题。教师行为:个辅不少于10个,随时提问抽查讨论指导10分钟经过同学们深入的自学,解决了疑惑,同时又发现了一些新的问题,下面我们对这些问题进行解决听好任务:解决个性问题 形成共性问题并板书 选择b、c类问题进行展讲 展讲答案、思路和拓展学法指导:学科长主持 由基础薄弱的同学开始轮流提出问题,其他同学解决、补充、笔录。时间: 10分钟 现在开始教师行为:对小组交流进行指导督促(最好督促学科长在组内展讲一次) 对提出的问题进行分类、评价 老师指导小组内组织交流,在学生讨论的过程中,参与其中,并给予相应的指导、点拨和引领。鼓励每个学生都能发表自己的见解,使自己小组的方案更完备,提醒学生要有集体荣誉感。生成小组问题,写在黑板上,全班交流,解决其他组可以解决的问题,最后生成各组的共性问题,记录下来。展讲指导8分钟小组交流中,二组、五组、六组全员参与,氛围热烈,交流效果好,各加3分,望其他组向他们学习。 现在各组生成了更有价值的问题,也已经准备好帮助其他小组解答问题。展讲任务: 1.学科长竞争展讲。 2.展讲所选问题的答案、思路、拓展。 3.其他同学做好记录、补充、质疑。展讲要求: 1.展讲人声音宏亮,语言流畅,运用彩笔分析图形,板书必要的步骤。 2.其他同学认真倾听、思考,熟悉的问题积极补充,有困难的问题及时记录并质疑。教师行为: 1.对问题展讲及时评价。 2.对展讲、补充、质疑特别积极的组各加3分,鼓励其他小组向他们学习。3一组、三组、七组要积极表现,争取在归纳延伸环节为自己小组多挣分。预计问题: 1.圆的对称性有哪些(说明对称轴和对称中心)?垂径定理的条件和结论分别是什么?在推论中应特别注意什么?2.在应用圆心角、弧、弦、弦心距这几组量的关系时应特别注意什么?3.本单元常用的辅助线有哪些?说明其用法4.垂径定理和确定圆的条件在生活中有哪些应用?归纳课堂分钟教师: 同学们展讲的非常棒,未展讲的问题做好整理,做为明天的学习任务,同学们可以课下继续学习。结合文本、导读单及前后黑板上的问题,回扣目标,反思你有哪些收获,哪些疑惑,待会儿我抽查。1.生总结知识点2.谈体会过 程时控学导内容设计情境创设2分钟“五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥,已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图(1)最高的圆拱的跨度为110米,拱高为22米,如图(2)那么这个圆拱所在圆的直径为 米?明确任务2分钟给学生1分钟时间阅读黑板上的问题明确本节的学习任务,带着问题去阅读文本(提前把问题写在黑板上)自学学习问题探究8分钟带着问题阅读课本、导读单以及相关资料;把个人发现的新问题写在导读单中;反复阅读课本内容从答案思路和拓展三方面思考黑板上的问题。学生有困难时小声的求助于对桌小组讨论展示解决7分钟1.对自学环节中学习好的进行评价;2.深入到讨论氛围不够热烈的组进行督促和指导,看学生主要存在哪些问题?重点指导课本中的例题的解题过程;3.督促学科长汇总本组的小组问题及时书写在黑板上对应位置,并根据教师对问题的等级评价快速选定并讨论其他组的一个问题,明确答案,清晰思路或规律,翻阅资料找到这一问题的拓展或延伸。4.关注全班同学对问题的选择及讨论状况,引导各组把握好时间。展讲指导8分钟1根据问题等级先b类问题,再讲c类问题,学生按顺序展讲。随时关注学生生成的问题。2要求声音洪亮,姿态大方,运用好开头语、结束语。3指导展讲人及时总结,其他同学做好补充和质疑,根据自己的情况及时做好笔记。精讲点拨 答案 方法 拓展13分钟预计问题:1.已知o的直径是4cm,弦ab= cm,则aob= ,若点p是o上异于a、b两点外的一点,则apb= .2.如图,o的直径为10,弦ab的长为8,m是弦ab上的动点,则om的长的取值范围是( )a . b.c. d.3.如图,a(3,0),b(0,-4),点m是x轴上的一点,以m为圆心且过点a的圆记为m,n为m上的一点,若四边形abmn是平行四边形,则点m的坐标是 ,点n的坐标是 。 第3题4.如图,在rtabc中,c=90,ac=3,bc=4,以点c为圆心,ca为半径的圆与ab、bc分别交于点d、e,求bd

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论