九年级数学下册重要知识点总结.doc_第1页
九年级数学下册重要知识点总结.doc_第2页
九年级数学下册重要知识点总结.doc_第3页
九年级数学下册重要知识点总结.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初三数学下册重要知识点总结第25章 概率1、 必然事件、不可能事件、随机事件的区别2、概率 注意:(1)概率是随机事件发生的可能性的大小的数量反映. (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.3、求概率的方法(1)用列举法求概率(列表法、画树形图法)(2)用频率估计概率:一方面,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.第26章 二次函数1. 二次函数的一般形式:y=ax2+bx+c.(a0) 4求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把 这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出 解析式-待定系数法.5二次函数的顶点式: y=a(x-h)2+k (a0); 由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程 x=h 和函数的最值 y最值= k.6求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式.8. 二次函数y=ax2+bx+c (a0)的图象及几个重要点的公式: 9. 二次函数y=ax2+bx+c (a0)中,a、b、c与的符号与图象的关系:(1) a0 抛物线开口向上; a0 抛物线开口向下;(2) c0 抛物线从原点上方通过; c=0 抛物线从原点通过;c0 抛物线从原点下方通过;(3) a, b异号 对称轴在y轴的右侧; a, b同号 对称轴在y轴的左侧;b=0 对称轴是y轴;(4) b24ac0 抛物线与x轴有两个交点; b24ac =0 抛物线与x轴有一个交点(即相切); b24ac0 抛物线与x轴无交点.10二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.第27章 相似形 1“平行出比例”定理及逆定理:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例;(1)(3)(2)几何表达式举例:(1) DEBC (2) DEBC (3) DEBC 2比例的基本性质: a:b=c:d ad=bc ; 3定理:“平行”出相似平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.几何表达式举例:DEBC ADEABC4定理:“AA”出相似如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.几何表达式举例:A=A 又AED=ACBADEABC5定理:“SAS”出相似如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.几何表达式举例: 又A=AADEABC 6“双垂” 出相似及射影定理:(1)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似;(2)双垂图形中,两条直角边是它在斜边上的射影和斜边的比例中项,斜边上的高是它分斜边所成两条线段的比例中项.几何表达式举例:(1) ACCB又CDAB ACDCBDABC(2) ACCB CDAB AC2=ADABBC2=BDBA DC2=DADB7相似三角形性质:(1)相似三角形对应角相等,对应边成比例;(2)相似三角形对应高的比,对应中线的比,对应角平分线、周长的比都等于相似比;(3)相似三角形面积的比,等于相似比的平方.(1) ABCEFG BAC=FEG (2) ABCEFG 又AD、EH是对应中线(3) ABCEFG 四、位似1、利用位似,可以将一个图形放大或缩小作图时要注意:首先确定位似中心,位似中心的位置可随意选择;确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;符合要求的图形不惟一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形第28章 解三角形 1.三角函数的定义:在RtABC中,如C=90,那么sinA=; cosA=;tanA=; cotA=.2余角三角函数关系 - “正余互化公式” 如A+B=90, 那么:sinA=cosB; cosA=sinB; tanA=cotB; cotA=tanB.3. 同角三角函数关系:sin2A+cos2A =1; tanAcotA =1. tanA= 4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函数随角的增大,函数值反而减小.5特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数值,要熟练记忆它们. A304560sinAc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论