




免费预览已结束,剩余11页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.2用样本估计总体2014高考会这样考1.考查样本的频率分布(分布表、直方图、茎叶图)中的有关计算,样本特征数(众数、中位数、平均数、标准差)的计算主要以选择题、填空题为主;2.考查以样本的分布估计总体的分布(以样本的频率估计总体的频率、以样本的特征数估计总体的特征数)复习备考要这样做1.理解统计中的常用术语:总体、个体、样本、平均数、方差、中位数、众数;2.会利用频率分布直方图、茎叶图对总体进行估计,尤其是频率分布直方图的应用更是高考考查的热点1 频率分布直方图(1)通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布估计总体的频率分布,另一种是用样本的数字特征估计总体的数字特征(2)在频率分布直方图中,纵轴表示,数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图就会越来越接近于一条光滑的曲线,统计中称之为总体密度曲线,它能够更加精细的反映出总体在各个范围内取值的百分比(4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来方便2 用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数众数:在一组数据中,出现次数最多的数据叫做这组数据的众数中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数平均数:样本数据的算术平均数,即(x1x2xn)在频率分布直方图中,中位数左边和右边的直方图的面积应该相等(2)样本方差、标准差标准差s ,其中xn是样本数据的第n项,n是样本容量,是平均数标准差是反映总体波动大小的特征数,样本方差是标准差的平方通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差难点正本疑点清源1 作频率分布直方图的步骤(1)求极差;(2)确定组距和组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图频率分布直方图能很容易地表示大量数据,非常直观地表明分布的形状2 众数、中位数与平均数的异同(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量(2)由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变,这是中位数、众数都不具有的性质(3)众数考查各数据出现的频率,其大小只与这组数据中的部分数据有关当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题(4)某些数据的变动对中位数可能没有影响中位数可能出现在所给数据中,也可能不在所给数据中当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势3 利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值(2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和(3)众数:最高的矩形的中点的横坐标1 (2011江苏)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s2_.答案3.2解析7,s2(107)2(67)2(87)2(57)2(67)23.2.2 (2011浙江)某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图)根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是_答案600解析由直方图易得数学考试中成绩小于60分的频率为(0.0020.0060.012)100.2,所以所求分数小于60分的学生数为3 0000.2600.3 (2012湖南)如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_(注:方差s2(x1)2(x2)2(xn)2,其中为x1,x2,xn的平均数)答案6.8解析依题意知,运动员在5次比赛中的分数依次为8,9,10,13,15,其平均数为11.由方差公式得s2(811)2(911)2(1011)2(1311)2(1511)2(941416)6.8.4 一个容量为20的样本,数据的分组及各组的频数如下:10,20),2;20,30),3;30,40),x;40,50),5;50,60),4;60,70),2;则x_;根据样本的频率分布估计,数据落在10,50)的概率约为_答案40.7解析x20(23542)4,p0.7或p10.7.5 某雷达测速区规定:凡车速大于或等于70 km/h的汽车视为“超速”,并将受到处罚,如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以看出被处罚的汽车大约有()a30辆 b40辆 c60辆 d80辆答案b解析由题图可知,车速大于或等于70 km/h的汽车的频率为0.02100.2,则将被处罚的汽车大约有2000.240(辆).题型一频率分布直方图的绘制与应用例1某校从参加高一年级期中考试的学生中随机抽出60名学生,将其物理成绩(均为整数)分成六段40,50),50,60),90,100后得到如图所示的频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试中的平均分思维启迪:利用各小长方形的面积和等于1求分数在70,80)内的频率,再补齐频率分布直方图解(1)设分数在70,80)内的频率为x,根据频率分布直方图,有(0.0100.01520.0250.005)10x1,可得x0.3,所以频率分布直方图如图所示(2)平均分为x450.1550.15650.15750.3850.25950.0571(分)探究提高频率分布直方图直观形象地表示了样本的频率分布,从这个直方图上可以求出样本数据在各个组的频率分布根据频率分布直方图估计样本(或者总体)的平均值时,一般是采取组中值乘以各组的频率的方法某种袋装产品的标准质量为每袋100克,但工人在包装过程中一般有误差,规定误差在2克以内的产品均合格由于操作熟练,某工人在包装过程中不称重直接包装,现对其包装的产品进行随机抽查,抽查30袋产品获得的数据如下:质量(单位:克)数量(单位:袋)90,94)294,98)698,102)12102,106)8106,1102(1)根据表格中的数据绘制产品质量的频率分布直方图;(2)估计该工人包装的产品的平均质量的估计值是多少解(1)频率分布直方图如下:(2)9296100104108100.27(克)题型二茎叶图的应用例2某良种培育基地正在培育一种小麦新品种a.将其与原有的一个优良品种b进行对照试验两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种a:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454品种b:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407,410,412,415,416,422,430(1)作出数据的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种a与b的亩产量及其稳定性进行比较,写出统计结论思维启迪:作茎叶图时,将高位(十位与百位)作为茎,低位(个位)作为叶,逐个统计;根据茎叶图分析两组数据的特点,可以得出结论解(1)如下图(2)由于每个品种的数据都只有25个,样本不大,画茎叶图很方便;此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比较,没有任何信息损失,而且还可以随时记录新的数据(3)通过观察茎叶图可以看出:品种a的亩产平均数(或均值)比品种b高;品种a的亩产标准差(或方差)比品种b大,故品种a的亩产稳定性较差探究提高(1)茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况(2)茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况(1) 如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和是_(2)甲、乙两个体能康复训练小组各有10名组员,经过一段时间训练后,某项体能测试结果的茎叶图如图所示,则这两个小组中体能测试平均成绩较高的是_组答案(1)64(2)甲解析(1)甲的中位数为28,乙的中位数为36,甲、乙得分中位数之和为283664.(2)甲75.5,乙75.4,甲乙题型三用样本的数字特征估计总体的数字特征例3甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算两组数据的平均数;(2)分别计算两组数据的方差;(3)根据计算结果,估计一下两名战士的射击水平谁更好一些思维启迪:根据公式计算平均数和方差,然后利用平均数和方差的意义进行估计解(1)甲(86786591047)7(环),乙(6778678795)7(环)(2)由方差公式s2(x1)2(x2)2(xn)2可求得s3.0(环2),s1.2(环2)(3)由甲乙,说明甲、乙两战士的平均水平相当;又ss,说明甲战士射击情况波动大,因此乙战士比甲战士射击情况稳定探究提高平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小(1)如右图是某电视台综艺节目举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为 ()a84,4.84 b84,1.6c85,4 d85,1.6(2)(2012山东)在某次测量中得到的a样本数据如下:82,84,84,86,86,86,88,88,88,88.若b样本数据恰好是a样本数据每个都加2后所得数据,则a,b两样本的下列数字特征对应相同的是()a众数 b平均数c中位数 d标准差答案(1)d(2)d解析(1)由茎叶图可知评委打出的最低分为79,最高分为93,其余得分为84,84,86,84,87,故平均分为85,方差为3(8485)2(8685)2(8785)21.6.(2)对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变统计图表识图不准致误典例:(4分)从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示:若某高校a专业对视力的要求在0.9以上,则该班学生中能报a专业的人数为_易错分析解题中易出现审题不仔细,又对所给图形没有真正理解清楚,将矩形的高误认为频率或者对“0.9以上”的含义理解有误解析该班学生视力在0.9以上的频率为(1.000.750.25)0.20.4,故能报a专业的人数为0.45020.答案20温馨提醒频率分布条形图的纵轴(矩形的高)表示频率;频率分布直方图的纵轴(矩形的高)表示频率与组距的比值,其各小组的频率等于该小组上的矩形的面积方法与技巧1 用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致通过频率分布表和频率分布直方图可以对总体作出估计2 茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作3 若取值x1,x2,xn的频率分别为p1,p2,pn,则其平均值为x1p1x2p2xnpn;若x1,x2,xn的平均数为,方差为s2,则ax1b,ax2b,axnb的平均数为ab,方差为a2s2.失误与防范频率分布直方图的纵坐标为频率/组距,每一个小矩形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误a组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1 (2011四川)有一个容量为66的样本,数据的分组及各组的频数如下:11.5,15.5)215.5,19.5)419.5,23.5)923.5,27.5)1827.5,31.5)1131.5,35.5)1235.5,39.5)739.5,43.5)3根据样本的频率分布估计,数据落在31.5,43.5)的概率约是()a. b. c. d.答案b解析由条件可知,落在31.5,43.5)的数据有127322(个),故所求概率约为.2 为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图),已知从左到右各长方形高的比为235631,则该班学生数学成绩在(80,100)之间的学生人数是 ()a32 b27 c24 d33答案d解析80100之间两个长方形高占总体的比例为,即为频数之比,x33.3 在某项体育比赛中,七位裁判为一选手打出的分数如下:90899095939493去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()a92,2 b92,2.8 c93,2 d93,2.8答案b解析去掉最高分95和最低分89后,剩余数据的平均数为92,方差为s2(9092)2(9092)2(9392)2(9492)2(9392)2(44141)2.8.4 如图,样本a和b分别取自两个不同的总体,它们的样本平均数分别为a和b,样本标准差分别为sa和sb,则 ()a.ab,sasb b.asbc.ab,sasb d.ab,sasb答案b解析a中的数据都不大于b中的数据,所以asb.二、填空题(每小题5分,共15分)5 (2012广东)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为_(从小到大排列)答案1,1,3,3解析假设这组数据按从小到大的顺序排列为x1,x2,x3,x4,则又s1,(x12)2(x22)22.同理可求得(x32)2(x42)22.由x1,x2,x3,x4均为正整数,且(x1,x2),(x3,x4)均为圆(x2)2(y2)22上的点,分析知x1,x2,x3,x4应为1,1,3,3.6 (2012山东)如图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5,样本数据的分组为20.5,21.5),21.5,22.5),22.5,23.5),23.5,24.5),24.5,25.5),25.5,26.5已知样本中平均气温低于22.5 的城市个数为11,则样本中平均气温不低于25.5 的城市个数为_答案9解析最左边两个矩形面积之和为0.1010.1210.22,总城市数为110.2250,最右面矩形面积为0.1810.18,500.189.7 将容量为n的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为234641,且前三组数据的频数之和等于27,则n_.答案60解析第一组至第六组数据的频率之比为234641,前三组频数和为n27,故n60.三、解答题(共22分)8 (10分)甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价解(1)由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分甲13,乙13,s(1013)2(1313)2(1213)2(1413)2(1613)24,s(1313)2(1413)2(1213)2(1213)2(1413)20.8.(2)由ss可知乙的成绩较稳定从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高9 (12分)(2012广东)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是50,60),60,70),70,80),80,90),90,100(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在50,90)之外的人数.分数段50,60)60,70)70,80)80,90)xy11213445解(1)由频率分布直方图知(2a0.020.030.04)101,解得a0.005.(2)由频率分布直方图知这100名学生语文成绩的平均分为550.00510650.0410750.0310850.0210950.0051073(分)(3)由频率分布直方图知语文成绩在50,60),60,70),70,80),80,90)各分数段的人数依次为0.005101005,0.041010040,0.031010030,0.021010020.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,4020,3040,2025.故数学成绩在50,90)之外的人数为100(5204025)10.b组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1 (2011重庆)从一堆苹果中任取10只,称得它们的质量如下(单位:克):12512012210513011411695120134则样本数据落在114.5,124.5内的频率为 ()a0.2 b0.3c0.4 d0.5答案c解析落在114.5,124.5内的样本数据为120,122,116,120,共4个,故所求频率为0.4.2 为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如图所示由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为 ()a0.27,78 b0.27,83c2.7,78 d2.7,83答案a解析由题意,4.5到4.6之间的频率为0.09,4.6到4.7之间的频率为0.27,后6组的频数成等差数列,设公差为d,则有60.2715d10.010.030.09,解得d然后可求得各组频率(也可用排除法)3 一个样本a,3,5,7的平均数是b,且a、b是方程x25x40的两根,则这个样本的方差是 ()a3 b4 c5 d6答案c解析x25x40的两根是1,4.当a1时,a,3,5,7的平均数是4,当a4时,a,3,5,7的平均数不是1.a1,b4.则方差s2(14)2(34)2(54)2(74)25,故选c.二、填空题(每小题5分,共15分)4 从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)由图中数据可知a_.若要从身高在120,130),130,140),140,150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在140,150内的学生中选取的人数应为_答案0.0303解析小矩形的面积等于频率,除120,130)外的频率和为0.700,a0.030.由题意知,身高在120,130),130,140),140,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小兔子学礼貌课件
- 高效能动力实操面试题库精 编
- 小儿骨折X线诊断课件
- 烟台职业素养测试题及答案解析
- 文字魅力招聘:文学领域面试问题及答案解析
- 高中物理公式速查手册:试题及答案精 编
- 婚前共同买房的协议书
- 女娲造人 教案教学设计
- 大学生暑假工作实习报告
- 高级人才选拔:类面试面试技巧与题目
- 门窗订购电子合同模板
- 2024年患者用药指导知识技能竞赛(省选拔赛)参考试题库(含答案)
- 2024云南省交通投资建设集团限公司大理管理处招聘105人易考易错模拟试题(共200题)试卷后附参考答案
- 2024年江苏省小升初数学(新初一)分班考试检测卷(一)
- 钢板桩支护计算书全套
- 广西贺州市2022-2023学年八年级下册期末物理试卷(含答案)
- DL∕T 5344-2018 电力光纤通信工程验收规范
- 14生活日用品的联想 (教案)人美版美术四年级上册
- CH+8016-1995全球定位系统(GPS)测量型接收机检定规程
- DL-T5493-2014电力工程基桩检测技术规程
- 医院系统瘫痪应急预案
评论
0/150
提交评论