




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.1随机抽样1 简单随机抽样(1)定义:从元素个数为n的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样(2)最常用的简单随机抽样的方法:抽签法和随机数表法2 系统抽样的步骤假设要从容量为n的总体中抽取容量为n的样本(1)先将总体的n个个体编号;(2)确定分段间隔k,对编号进行分段,当(n是样本容量)是整数时,取k;当不是整数时,可随机地从总体中剔除余数,再确定分段间隔;(3)在第1段用简单随机抽样确定第一个个体编号s (sk);(4)按照一定的规则抽取样本,通常是将s加上间隔k得到第2个个体编号(sk),再加k得到第3个个体编号(s2k),依次进行下去,直到获取整个样本3 分层抽样(1)分层抽样的定义:在抽样时,将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样(2)当总体由有明显差异的几部分组成时,往往选用分层抽样1 判断下面结论是否正确(请在括号中打“”或“”)(1)简单随机抽样是一种不放回抽样()(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关()(3)系统抽样在起始部分抽样时采用简单随机抽样()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平()(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关()2 在某班的50名学生中,依次抽取学号为5、10、15、20、25、30、35、40、45、50的10名学生进行作业检查,这种抽样方法是 ()a随机抽样 b分层抽样c系统抽样 d以上都不是答案c3 将参加英语口语测试的1 000名学生编号为000,001,002,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,019,且第一组随机抽取的编号为015,则抽取的第35个编号为 ()a700 b669 c695 d676答案c解析由题意可知,第一组随机抽取的编号l15,分段间隔数k20,则抽取的第35个编号为a3515(351)20695.4 大、中、小三个盒子中分别装有同一种产品120个、60个、20个,现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的抽样方法为_答案简单随机抽样解析因为三个盒子中装的是同一种产品,且按比例抽取每盒中抽取的不是整数,所以将三盒中产品放在一起搅匀按简单随机抽样法(抽签法)较为适合5 一支田径队有男运动员48人,女运动员36人若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为_答案12解析样本的抽取比例为,所以应抽取男运动员4812(人)题型一简单随机抽样例1下列抽取样本的方式是否属于简单随机抽样?(1)从无限多个个体中抽取100个个体作为样本(2)盒子里共有80个零件,从中选出5个零件进行质量检验在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里(3)从20件玩具中一次性抽取3件进行质量检验(4)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛思维启迪判断一个抽样是否为简单随机抽样,要判断是否符合简单随机抽样的特征解(1)不是简单随机抽样因为被抽取的样本总体的个体数是无限的,而不是有限的(2)不是简单随机抽样因为它是放回抽样(3)不是简单随机抽样因为这是“一次性”抽取,而不是“逐个”抽取(4)不是简单随机抽样因为不是等可能抽样思维升华(1)简单随机抽样需满足:被抽取的样本总体的个体数有限;逐个抽取;是不放回抽取;是等可能抽取(2)简单随机抽样常有抽签法(适用总体中个体数较少的情况)、随机数表法(适用于个体数较多的情况)(2013江西)总体由编号为01,02,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481a.08 b07 c02 d01答案d解析从第1行第5列、第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.题型二系统抽样例2将参加夏令营的600名学生编号为001,002,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第营区,从301到495在第营区,从496到600在第营区,三个营区被抽中的人数依次为 ()a26,16,8 b25,17,8c25,16,9 d24,17,9思维启迪系统抽样又称“等距抽样”可以根据“等距”确定各营区被抽中的人数答案b解析由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(kn)组抽中的号码是312(k1)令312(k1)300得k,因此第营区被抽中的人数是25;令300312(k1)495得k42,因此第营区被抽中的人数是422517.结合各选项知,选b.思维升华(1)系统抽样的特点机械抽样,又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取的样本号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码(2)系统抽样时,如果总体中的个体数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行(2013陕西)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,840随机编号,则抽取的42人中,编号落入区间481,720的人数为 ()a11 b12 c13 d14答案b解析由20,即每20人抽取1人,所以抽取编号落入区间481,720的人数为12(人)题型三分层抽样例3(2013湖南)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n等于 ()a9 b10 c12 d13思维启迪分层抽样,抽样比是一个定值答案d解析,n13.思维升华在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即nininn.某校共有学生2 000名,各年级男、女生人数如下表已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为 ()一年级二年级三年级女生373xy男生377370za.24 b18 c16 d12答案c解析依题意我们知道二年级的女生有380人,那么三年级的学生人数应该是2 000373377380370500,即总体中各个年级的人数比为332,故在分层抽样中应在三年级抽取的学生人数为6416.五审图表找规律典例:(12分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数管理技术开发营销生产共计老年40404080200中年80120160240600青年401602807201 200小计1603204801 0402 000(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对广州亚运会举办情况的了解,则应怎样抽样?抽取40人调查身体状况(观察图表中的人数分类统计情况)样本人群应受年龄影响(表中老、中、青分类清楚,人数确定)要以老、中、青分层,用分层抽样要开一个25人的座谈会(讨论单位发展与薪金调整)样本人群应受管理、技术开发、营销、生产方面的影响(表中管理、技术开发、营销、生产分类清楚,人数确定)要以管理、技术开发、营销、生产人员分层,用分层抽样要抽20人调查对广州亚运会举办情况的了解可认为亚运会是大众体育盛会,一个单位人员对情况了解相当将单位人员看作一个整体(从表中数据看总人数为2 000人)人员较多,可采用系统抽样规范解答解(1)按老年、中年、青年分层,用分层抽样法抽取,1分抽取比例为.2分故老年人,中年人,青年人各抽取4人,12人,24人4分(2)按管理、技术开发、营销、生产分层,用分层抽样法抽取,5分抽取比例为,6分故管理,技术开发,营销,生产各抽取2人,4人,6人,13人8分(3)用系统抽样,对全部2 000人随机编号,号码从00012000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,1 900,共20人组成一个样本12分温馨提醒(1)本题审题的关键有两点,一是对图表中的人员分类情况和数据要审视清楚;二是对样本的功能要审视准确(2)本题易错点是,对于第(2)问,由于对样本功能审视不准确,按老、中、青三层分层抽样.方法与技巧三种抽样方法的比较类别各自特点相互联系适用范围共同点简单随机抽样从总体中逐个抽取最基本的抽样方法总体中的个体数较少抽样过程中每个个体被抽到的可能性相等系统抽样将总体平均分成几部分,按事先确定的规则分别在各部分中抽取在起始部分抽样时,采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,按各层个体数之比抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成失误与防范进行分层抽样时应注意几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠;(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同;(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样a组专项基础训练(时间:30分钟)一、选择题1 (2012四川)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查假设四个社区驾驶员的总人数为n,其中甲社区有驾驶员96人若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数n为()a101 b808 c1 212 d2 012答案b解析由题意知抽样比为,而四个社区一共抽取的驾驶员人数为12212543101,故有,解得n808.2 某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()a6 b8 c10 d12答案b解析设样本容量为n,则n6,n14,高二年级所抽人数为148.3 某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为 ()a7 b15 c25 d35答案b解析由题意知青年职工人数中年职工人数老年职工人数350250150753.由样本中青年职工为7人得样本容量为15.4 为规范学校办学,省教育厅督察组对某所高中进行了抽样调查抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应为()a13 b19 c20 d51答案c解析抽样间隔为463313,故另一位同学的编号为71320,选c.5 某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生是高一学生的两倍,高二学生比高一学生多300人,现在按的抽样比例用分层抽样的方法抽取样本,则高一学生应抽取的人数为 ()a8 b11 c16 d10答案a解析设高一学生有x人,则高三学生有2x人,高二学生有(x300)人,学校共有4x3003 500(人),解得x800(人),由此可得按的抽样比例用分层抽样的方法抽取样本,高一学生应抽取的人数为8008(人),故应选a.二、填空题6 (2012天津)某地区有小学150所,中学75所,大学25所现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_所学校,中学中抽取_所学校答案189解析15015018,759.7 将某班的60名学生编号为01,02,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是_答案16,28,40,528 (2012福建)一支田径队有男女运动员98人,其中男运动员有56人,按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_答案12解析依题意,女运动员有985642(人)设应抽取女运动员x人,根据分层抽样特点,得,解得x12.9 课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为_答案2解析由已知得抽样比为,丙组中应抽取的城市数为82.10用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1160编号,按编号顺序平均分成20组(18号,916号,153160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是_答案11解析由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x,则由系统抽样的法则可知,第n组抽出个体的号码应该为x(n1)8,所以第16组应抽出的号码为x(161)8123,解得x3,所以第2组中应抽出个体的号码为3(21)811.b组专项能力提升(时间:30分钟)1 某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,270,使用系统抽样时,将学生统一随机编号为1,2,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:7,34,61,88,115,142,169,196,223,2505,9,100,107,111,121,180,195,200,26511,38,65,92,119,146,173,200,227,25430,57,84,111,138,165,192,219,246,270关于上述样本的下列结论中,正确的是 ()a、都不能为系统抽样 b、都不能为分层抽样c、都可能为系统抽样 d、都可能为分层抽样答案d解析因为为系统抽样,所以选项a不对;因为为分层抽样,所以选项b不对;因为不为系统抽样,所以选项c不对,故选d.2 (2012山东)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间1,450的人做问卷a,编号落入区间451,750的人做问卷b,其余的人做问卷c.则抽到的人中,做问卷b的人数为 ()a7 b9 c10 d15答案c解析由系统抽样的特点知:抽取号码的间隔为30,抽取的号码依次为9,39,69,939.落入区间451,750的有459,489,729,这些数构成首项为459,公差为30的等差数列,设有n项,显然有729459(n1)30,解得n10.所以做问卷b的有10人3 为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年药剂师考试试题及答案
- 2025年学生心理健康与教育知识考试试卷及答案
- 2025年信息管理与信息系统专业综合测试试题及答案
- 2025年现代化农业与农村发展职业资格考试试卷及答案
- 2025年金融市场与投资分析知识测试试卷及答案
- 2025年电子技术与通信工程师职业资格考试试卷及答案
- 2025年环境地质学与资源勘探实验考试卷及答案
- 2025年公共卫生与流行病学基础考试试题及答案
- 2025年非营利组织管理与领导力考试试题及答案
- 写景作文美丽的落日250字10篇范文
- 《机械设计基础》试题库(主观题及答案)
- JGJ100-2015 车库建筑设计规范
- 2024年承包建设工程合同
- 2024年江苏省无锡市中考地理试卷(附真题答案)
- 河南省郑州市金水区2023-2024学年七年级(下)期末数学试卷(含答案)
- DBJ∕T 15-120-2017 城市轨道交通既有结构保护技术规范
- 免拆底模钢筋桁架楼承板应用技术规程
- 文化墙设计制作安装合同范本版
- 安恒信息:2024体育赛事网络安全保障实践蓝皮书
- 扩大基础重力式桥台综合标准施工核心技术专业方案修改
- 大学生安全教育(共31张课件)
评论
0/150
提交评论