山东省聊城市高唐县中考数学一轮复习 实数课件.ppt_第1页
山东省聊城市高唐县中考数学一轮复习 实数课件.ppt_第2页
山东省聊城市高唐县中考数学一轮复习 实数课件.ppt_第3页
山东省聊城市高唐县中考数学一轮复习 实数课件.ppt_第4页
山东省聊城市高唐县中考数学一轮复习 实数课件.ppt_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一 实数 例1 在下列实数中 无理数共有 a 2个b 3个c 4个d 5个 一 实数的分类 基本概念 c 有理数总复习 一 有理数的基本概念 二 有理数的运算 1 负数2 有理数3 数轴4 互为相反数5 互为倒数6 有理数的绝对值7 有理数大小的比较8 科学记数法 近似数与有效数字 加 减 乘 除 乘方运算 一 有理数的基本概念 1 负数 在正数前面加 的数 0既不是正数 也不是负数 判断 1 a一定是正数 2 a一定是负数 3 a 一定大于0 4 0是正整数 2 有理数 整数和分数统称有理数 有理数 整数 分数 正整数 自然数 零 负整数 正分数 负分数 有理数 正有理数 零 负有理数 正整数 自然数 正分数 负整数 负分数 3 数轴 规定了原点 正方向和单位长度的直线 1 在数轴上表示的两个数 右边的数总比左边的数大 2 正数都大于0 负数都小于0 正数大于一切负数 3 所有有理数都可以用数轴上的点表示 4 相反数 只有符号不同的两个数 其中一个是另一个的相反数 1 数a的相反数是 a 2 0的相反数是0 2 2 4 4 3 若a b互为相反数 则a b 0 a是任意一个有理数 5 倒数 乘积是1的两个数互为倒数 1 a的倒数是 a 0 3 若a与b互为倒数 则ab 1 2 0没有倒数 例 下列各数 哪两个数互为倒数 8 1 8 1 6 绝对值 一个数a的绝对值就是数轴上表示数a的点与原点的距离 1 数a的绝对值记作 a a a 0 3 对任何有理数a 总有 a 0 7 有理数大小的比较 1 可通过数轴比较 在数轴上的两个数 右边的数总比左边的数大 正数都大于0 负数都小于0 正数大于一切负数 2 两个负数 绝对值大的反而小 即 若a 0 b 0 且 a b 则a b 8 科学记数法 近似数与有效数字 1 把一个大于10的数记成a 10n的形式 其中a是整数数位只有一位的数 这种记数法叫做科学记数法 2 一个近似数 从左边第一个不是0的数字起到 到精确到的数位止 所有的数字 都叫做这个数的有效数字 9 有理数的五种运算 1 运算法则2 运算顺序3 运算律 1 运算法则 1 有理数加法法则2 有理数减法法则3 有理数乘法法则4 有理数除法法则5 有理数的乘方 1 有理数加法法则 同号两数相加 取相同的符号 并把绝对值相加 异号两数相加 取绝对值较大的加数的符号 并用较大的绝对值减去较小的绝对值 互为相反数的两数相加得0 一个数同0相加 仍得这个数 若a 0 b b 则a b 用数学语言描述有理数加法法则 同号相加 若a 0 b 0 则a b 若a 0 b 0 则a b 若a 0 b 0 a b 则a b 异号相加 与0相加 若a b互为相反数 则a b a是任一个有理数 则a 0 a b a b b a 0 a a b 2 有理数减法法则 减去一个数 等于加上这个数的相反数 即a b a b 例 分别求出数轴上两点间的距离 表示2的点与表示 7的点 表示 3的点与表示 1的点 解 2 7 2 7 9 9 3 1 3 1 2 2 3 有理数的乘法法则 两数相乘 同号得正 异号得负 并把绝对值相乘 任何数同0相乘 都得0 几个不等于0的数相乘 积的符号由负因数的个数决定 当负因数有奇数个时 积为负 当负因数有偶数个时 积为正 几个数相乘 有一个因数为0 积就为0 用数学语言描述有理数乘法法则 同号相乘若a 0 b 0 则ab a b 若a 0 b 0 则ab a b 异号相乘若a 0 b 0 则ab 若a0 则ab a b a b 数与0相乘 a为任何有理数 则a 0 0 4 有理数除法法则 除以一个数等于乘上这个数的倒数 即 a b a b 0 两数相除 同号得正 异号得负 并把绝对值相除 0除以任何一个不等于0的数 都得0 5 有理数的乘方 求n个相同因数的积的运算 叫做乘方 正数的任何次幂都是正数 负数的奇次幂是负数 负数的偶次幂是正数 2 运算顺序 1 有括号 先算括号里面的 2 先算乘方 再算乘除 最后算加减 3 对只含乘除 或只含加减的运算 应从左往右运算 3 有理数的运算律 1 加法交换律 a b b a 2 加法结合律 a b c a b c 3 乘法交换律 ab ba 4 乘法结合律 ab c a bc 5 分配律 a b c ab ac 10 平方根与算术平方根 一般地 如果一个正数x的平方等于a 即x2 a 那么这个正数x就叫做a的算术平方根 记为 读作 根号a 特别地 我们规定0的算术平方根是0 即 0 一般地 如果一个数x的平方等于a 即x2 a 那么这个数x就叫做a的平方根 squareroot 记为 读作 正负根号a 特别地 我们规定0的平方根是0 即 0 你发现它们的区别了吗 11 平方根与算术平方根 在 如果x2 a 那么x 中 其隐含的条件有 1 x 0 即 0 2 a 0 3 2 a 4 a 在 如果x2 a 那么x 中 其隐含的条件有 1 a 0 2 2 a 3 12 平方根的性质与开平方 1 一个正数有两个平方根 且它们互为相反数 2 0只有一个平方根 它是0本身 3 负数没有平方根 4 2 a 5 开平方 求一个数a的平方根的运算 叫做开平方 extractionofsquareroot 其中a叫做被开方数 开平方运算与平方运算互为逆运算 一般地 求一个数的平方根的方法有两种 1 根据乘方意义求平方根 2 用计算器求平方根 13 立方根与开立方 一般地 如果一个正数x的立方等于a 即x3 a 那么这个正数x就叫做a的立方根 cuberoot 记为 读作 3次根号a 特别地 我们规定0的立方根是0 即 在 如果x3 a 那么x 中 其隐含的条件是x a都可以是任意数 14 立方根的性质与开立方 1 一个正数有一个正立方根 2 一个负数有一个负的立方根 3 0的立方根是0本身 4 5 6 开平方 求一个数a的立方根的运算 叫做开立方 extractionofsquareroot 其中a叫做被开方数 开立方运算与立方运算互为逆运算 一般地 求一个数的立方根有两种 1 根据乘方意义求立方根 2 用计算器求立方根 1 有理数和无理数的区别 不同之处在于 无限不循环小数 与 无限循环小数 的差别 前者不能化为分数 而后者能化为分数 2 开方运算是作为乘方运算的逆运算引人的 它使6种代数运算 加 减 乘 除 乘方 开方 的学习趋于完善 同时把数系扩张到实数 加法 乘法和乘方是 定义 的运算 而减法 除法和开方是作为 定义运算 的逆运算而引人的 加法和减法的统一 乘法和除法的统一 乘方和开方的统一 3 实数的运算法则和运算律 有理数的运算法则和运算律完全适用于实数 15 实数与有理数 16 有关实数的非负性 若几个非负数的和等于0 那么这几个非负数都0 18 近似数与有效数字 一个近似数 四舍五入到哪一位 就说这个近似数精确到哪一位 这时 从左边第一个非0数字起 到精确的数位止 所有的数字 都叫做这个数的有效数字 17 科学记数法 把一个数记成的形式 其中 n为整数 这种记数方法叫做科学记数法 19 带根号的数的化简和计算 化简标准 1 被开方数不含开得尽方的因数或因式 2 被开方数不含分母 3 分母中不含带根号的数 化简工具 20 计算 1 加减法 把带根号的数看作 字母 仿 通分 分解因式 合并同类项 运算 2 乘除法 运用性质 把带根号的数 因式 看作 字母 仿 分解因式 约分 运算 特别地 化去分母中的根号 如 4 乘方开方 运用性质 把带根号的数 因式 看作 字母 仿 分解因式 约分 运算 例2 3的相反数的倒数是 例3 a b c在数轴上的位置如图所示 且 则 例4 已知 a 3 b 2 且ab 0 求a b的值 a 3 b 2时 a b 5 a 3 b 2时 a b 5 例5 0 16的平方根是 的算术平方根是 例6 已知 化简 例7 若 则 例8 卫星绕地球运行的速度 即第一宇宙速度 是 则卫星绕地球运行秒走过的路程 米 结果保留两个有效数字 例9 02潍坊 若与互为相反数 则的值为 例10 中考题选 1 海淀区2004 2的相反数是a b c 2d 2 2 海淀区2004 2003年信息产业部的统计数据表明 截止到10月底 我国的电话用户总数达到5 12亿 居世界首位 其中5 12亿用科学记数法表示应为a b c d 3 重庆市北碚区2004 的相反数是 abc 2d2 4 重庆市北碚区2004 据 重庆经济报 2004年4月22日报道 今年我国要确保粮食产量达到4550亿千克 则该产量用科学记数法表示正确的是 a4 55 103亿千克b0 455 104亿千克c45 5 102亿千克d455 10亿千克 5 青海湟中2004 的相反数的倒数是 6 青海湟中2004 我县是全省人口最多的县 约为473500人 用科学记数法表示为 8 灵武 2004 世界文化遗产长城总长约67000

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论