



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三数学复习之函数概念、图象、性质1.一条曲线是函数图象的必要条件是:图象与平行于y轴的直线至多只有一个交点。一个函数存在反函数的充要条件是:定义域与值域须一一对应,反应在图象上平行于x轴的直线与图象至多有一个交点。单调函数必存在反函数吗?(是的,任何函数在它的一个单调区间内总有反函数);函数f(x)=x2-tx+2在上有反函数,则t的一切可取值的范围是_解析:对于“连续”函数而言,函数有反函数即单调;f(x)=x2-tx+2在上单调即区间 在对称轴x=的一侧,2或1,即t2或t4。2.求一个函数的反函数必须标明反函数的定义域,即要求出原函数的值域。求反函数的表达式的过程就是解(关于x的)方程的过程。注意:x=f-1(y)一定是唯一的。 函数的反函数为(a) (b)(c) (d)解析:,=1+1(关注分离常数),(0,+)又由得=,不难解出,互换后得(互换是“全面”的,表达式上换,定义域、值域也要换)故选b。3.原函数的定义域是反函数的值域,原函数的值域是反函数的定义域;原函数与反函数的图象关于y=x对称;若函数y=f(x)的定义域为a,值域为c,aa,bc,f =b; f-1=a 已知函数的反函数的图象的对称中心是(0,2),则a=_ 解析:原函数是有反比例函数(奇函数)平移而来,其图象关于(a,0)对称,它的反函数的图象应关于(0,a)对称,即a=2已知f(x)=x2+2x+3,(x-1),则f-1(3)= 。解析:此题不宜求反函数(麻烦),注意到3是反函数y=f-1(x)的自变量,就是原函数y=f(x)的函数值,令x2+2x+3=3,得x=0或x=-2,又 x-1,x=0,此即反函数的函数值f-1(3)(原函数的自变量)。已知f(x)=2sinxcosx+2cos2x-,x,求f-1(1)的值。4.奇函数对定义域内的任意x满足f(-x)+f(x)=0;偶函数对定义域内的任意x满足f(-x)-f(x)=0;注意:使用函数奇偶性的定义解题时,得到的是关于 x的恒等式而不是方程。若函数f(x)是奇函数或偶函数,则f(x)定义域必关于原点对称;反之,函数定义域不关于原点对称,该函数既非奇函数也非偶函数。若f(x)是奇函数且f(0)存在,则f(0)=0;反之不然。函数f(x)= loga|x-b|是偶函数的充要条件为 解析:思路一:函数f(x)=loga|x-b|是由偶函数y=loga|x|平移所得,函数f(x)=loga|x-b|的图象关于直线x=b对称,而它自身又是偶函数,图象又关于y轴(x=0)对称,b=0。思路二:f(x)=loga|x-b|是偶函数则loga|-x-b|= loga|x-b|恒成立,即|x+b|=|x-b|恒成立,b=0。 设f(x)=lg(10x+1)+ax是偶函数,g(x)=是奇函数,那么a+b的值为( ) a.1 b.-1 c.- d. 5. 偶函数图象关于y轴对称,推广:函数f(x)对定义域内的任意x都有f(a-x)=f(a+x) 函数f(x)的图象关于x=a对称,再推广: 函数f(x)对定义域内的任意x都有f(a+x)=f(b-x),f(x)的图象关于x=对称。奇函数图象关于原点对称,关推广:函数f(x)对定义域内的任意x都有f(a-x)=-f(a+x) 函数f(x)的图象关于(a,0)对称。注意:两个函数图象之间的对称问题不同于函数自身的对称问题。函数y=f(x)的图象关于直线x=a的对称曲线是函数y=f(2a-x)的图象,函数y=f(x)的图象关于点( a ,0)的对称曲线是函数y=-f(2a-x)的图象。, 若函数y=f(x-1)是偶函数,则y=f(x)的图象关于 对称解析:思路一:y=f(x-1)是偶函数,其图象关于y轴对称,向左平移1个单位后得到函数y=f(x)的图象,对称轴也随之平移至x=-1,即函数y=f(x)的图象关于x=-1对称;思路二:y=f(x-1)是偶函数,则有f(-x-1)=f(x-1),由轴对称的等价定义知函数y=f(x)的图象关于x=-1对称。若函数f(x)=(x-a)3满足f(1+x)=-f(1-x),则f(2)= .解析:由f(1+x)=-f(1-x)知,函数y=f(x)的图象关于(1,0)对称,事实上函数f(x)=(x-a)3的图象关于(a,0)对称,a=1,于是f(x)=(x-1)3,f(2)=1。函数y=f(a+x)与函数y=f(a-x)的图象a.关于y轴对称 b.关于直线x=a对称c.关于点m(a,0)对称 d. 关于点m(-a,0)对称6. 若函数f(x)满足:f(x+a)= f(x-a), 则f(x)是以2a为周期的函数。注意:不要和对称性相混淆。若函数f(x)满足:f(a+x)=-f(x)(a0),则f(x)是以2a为周期的函数。类似的条件还有等。已知函数满足,且当时,则与的图象的交点个数为 ( ) a、2 b、3 c、4 d、5yxo1-115解析:由知函数的周期为2,作出其图象如右,当x=5时,f(x)=1,log5x=1;当x5时,f(x)=1,log5x1, 与的图象不再有交点,故选c。设奇函数f(x)的定义域为r,且对任意实数x满足f(x+1)= -f(x),若当x时,f(x)=2x-1,则f()= .7.判断函数的单调性可用有关单调性的性质(如复合函数单调性的“同增异减”法则),研究三次或三次以上的多项式函数的单调性多用导数;证明函数单调性只能用定义或导数,不能用关于单调性的任何性质,用定义证明函数单调性的关键步骤往往是因式分解。记住并会证明:函数的单调性。了解单调性定义的变形:对区间内的任意x,y都有,则函数f(x)在递增(小于0则递减)。证明函数在(0,上递减,在,)上递增。解析:记=,思路一:用定义证明,任取0,)=-+-=(-)(1-),01,(-)(1-)0,即),函数在(0,上递减.在,)上递增的证明留给读者自己完成。思路二:用导数,=1-,若(0,则1,=1-0,函数在(0,上递减.函数在区间(0,3)上单调递减,则a的取值范围为aa10 b1a10 ca4 d1a0)个单位,则方程(表达式)中的y(x)应变为y-m(x-m); 曲线(函数图象)横(纵)坐标变为原来的n倍,则方程(表达式)中的x(y)应变为 ()。对称(翻折)变换,如函数y=f(-x)的图象是由y=f(x)的图象沿y轴翻折得到,y=-f(x)的图象是由y=f(x)的图象沿x轴翻折得到, y=|f(x)| 的图象是由y=f(x)的图象保留x轴上方的部分并翻折x轴下方的部分得到,y=f(|x|)是由y=f(x)的图象保留y轴右侧的部分,擦去左侧部分并将右侧的部分沿y轴翻折得到。记住两个函数图象:y=|x-a|的图象是“v字形”,“尖顶”是(a,0);的图象是由一个反比例函数平移(分离常数)而来。 奇函数y=f(x) (x0 ) ,当x(0,+)时,f (x)=x1,则函数f(x-1)的图象是()xyoxy11xy1xoy112oo1abcd解析:函数y=f(x)的图象为c图,将y=f(x)的图象向右平移1个单位即得到函数f(x-1)的图象,故选d。 函数f(x)=sin2x+2c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南宁代建合同范本
- 简短个人租房合同范本
- 门窗采购合同范本
- 路面硬化劳务合同范本
- 成人交友活动合同
- 合肥装潢公司合同范本
- 保险销售的合同范本
- 电缆敷设合同范本
- 工程小活合同范本
- 农具机械购销合同范本
- DB11-T 1140-2024 儿童福利机构常见疾病患儿养护规范
- 心脏康复戒烟处方
- 《工贸企业重大事故隐患判定标准(机械行业)》知识培训
- 2024年中考数学真题分类汇编(全国版)专题12一次函数及其应用(39题)含答案及解析
- 2024城市轨道交通节能改造EMC合作合同
- 全国职业院校技能大赛中职(大数据应用与服务赛项)考试题及答案
- 实验室检验结果及报告管理制度
- 新能源汽车动力系统优化
- 2022年版 义务教育《数学》课程标准
- 《电力行业职业技能标准 农网配电营业工》
- 第四章 休克病人的护理课件
评论
0/150
提交评论