




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
几何概型 古典概型 特点 1 试验中所有可能出现的基本事件只有有限个 2 每个基本事件出现的可能性相等 假设你家订了一份报纸 送报人可能在早上6 30 7 30之间把报纸送到你家 你父亲离开家去工作的时间在早上7 00 8 00之间 问你父亲在离开家前能得到报纸 称为事件a 的概率是多少 能否用古典概型的公式来求解 事件a包含的基本事件有多少 为什么要学习几何概型 问题 图中有两个转盘 甲乙两人玩转盘游戏 规定当指针指向b区域时 甲获胜 否则乙获胜 在两种情况下分别求甲获胜的概率是多少 事实上 甲获胜的概率与字母b所在扇形区域的圆弧的长度有关 而与字母b所在区域的位置无关 因为转转盘时 指针指向圆弧上哪一点都是等可能的 不管这些区域是相邻 还是不相邻 甲获胜的概率是不变的 几何概型 如果每个事件发生的概率只与构成该事件区域的长度 面积或体积 成比例 则称这样的概率模型为几何概率模型 简称为几何概型 几何概型的特点 1 试验中所有可能出现的结果 基本事件 有无限多个 2 每个基本事件出现的可能性相等 在几何概型中 事件a的概率的计算公式如下 即 等待的时间不超过10分钟 的概率为 例1某人午觉醒来 发现表停了 他打开收音机 想听电台报时 求他等待的时间不多于10分钟的概率 解 设a 等待的时间不多于10分钟 我们所关心的事件a恰好是打开收音机的时刻位于 50 60 时间段内 因此由几何概型的求概率的公式得 1 有一杯1升的水 其中含有1个细菌 用一个小杯从这杯水中取出0 1升 求小杯水中含有这个细菌的概率 2 如右下图 假设你在每个图形上随机撒一粒黄豆 分别计算它落到阴影部分的概率 练习 3 一张方桌的图案如图所示 将一颗豆子随机地扔到桌面上 假设豆子不落在线上 求下列事件的概率 1 豆子落在红色区域 2 豆子落在黄色区域 3 豆子落在绿色区域 4 豆子落在红色或绿色区域 5 豆子落在黄色或绿色区域 4 取一根长为3米的绳子 拉直后在任意位置剪断 那么剪得两段的长都不少于1米的概率有多大 例2假设你家订了一份报纸 送报人可能在早上6 30 7 30之间把报纸送到你家 你父亲离开家去工作的时间在早上7 00 8 00之间 问你父亲在离开家前能得到报纸 称为事件a 的概率是多少 几何概型的计算 会面问题 解 建立平面直角坐标系 横坐标x表示报纸送到时间 纵坐标y表示父亲离家时间 随机试验落在方形区域内任何一点是等可能的 所以这是几何概型 根据题意 只要点落到阴影部分 就表示父亲在离开家前能得到报纸 即事件a发生 所以 对于复杂的实际问题 解题的关键是要建立模型 找出随机事件与所有基本事件相对应的几何区域 把问题转化为几何概率问题 利用几何概率公式求解 练习甲乙二人相约定6 00 6 30在预定地点会面 先到的人要等候另一人10分钟后 方可离开 求甲乙二人能会面的概率 假定他们在6 00 6 30内的任意时刻到达预定地点的机会是等可能的 解设甲乙二人到达预定地点的时刻分别为x及y 分钟 则 二人会面 几何概型的计算 会面问题 甲乙两船都要在某个泊位停靠6小时 假定他们在一昼夜的时间段中随机到达 试求这两艘中至少有一艘在停泊时必须等待的概率 解 设甲到达的时间为x 乙为y 则 课堂小结 1 几何概型的特点 2 几何概型的概率公式 3 公式的运用 1 几何概型 如果每个事件发生的概率只与构成该事件区域的长度 面积或体积 成比例 则称这样的概率模型为几何概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门窗制作安装承包合同书
- 行路难主题思想深度解析:九年级语文古诗文阅读教学教案
- 那场大雨中的温暖情感作文(8篇)
- 雨天的回忆记一次难忘的雨天经历作文12篇
- 美容行业皮肤护理知识点测验题目集
- 农民合作参与农业生产资源整合协议
- 一件感到惭愧的事700字15篇范文
- 八年级篮球比赛活动方案
- 爱你不需要解释500字11篇
- 公交公司车展活动方案
- 2024年基金应知应会考试试题
- ISO-10358-1993译文-塑料管材和管件-耐化学性综合分类表
- 康复进修汇报
- 基于单片机的粮仓环境监测系统设计毕业论文
- 电力行业招投标培训
- 2024年云南省中考物理试题含答案
- 2024年石家庄市市属国企业面向社会公开招聘403名管理人员及专业技术人员高频难、易错点500题模拟试题附带答案详解
- 医药代表聘用合同模板
- 2024-2030年中国公路工程行业市场发展分析及前景预判与投资研究报告
- 工伤预防宣传和培训 投标方案(技术方案)
- 古代小说戏曲专题-形考任务4-国开-参考资料
评论
0/150
提交评论