正比例函数教案 (2).doc_第1页
正比例函数教案 (2).doc_第2页
正比例函数教案 (2).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十九章 正比例函数 教案19.2.1正比例函数(1)【教学目标】1、理解正比例函数的概念,能够判断两个变量是否能够构成正比例函数关系;2、根据已知条件写出正比例函数的解析式;3、能够利用正比例函数解决简单的数学问题。【教学重点】正比例函数的概念【教学难点】根据已知条件写出正比例函数的解析式【教学过程】一、复习回顾(学生思考并回答)京沪高速铁路全长1200km.设列车平均速度为300km/h.(1)列车的行程y(单位:km)与运行时间t(单位:h)之间有怎样的函数关系?(2)求自变量t的取值范围?(3)列车从北京南站出发2.5 h后,是否已经过了距始发站1100 km的南京站?二、自主探究:(小组讨论并回答)思考:写出下列问题的变量之间的函数解析式。(1)圆的周长L随半径r的大小变化而变化:(2)铁的密度为7.8g/m3,铁块的质量m(g)随它的体积V(cm3)的大小变化而变化;(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;(4)冷冻一个0的物体,使它每分下降2,物体的温度T(单位:)随冷冻时间t(单位:分)的变化而变化;归纳:这些函数的共同点:都是常数与自变量的积的形式。三、归纳概念:一般地,形如y=kx(k为常数,k0)的函数叫做正比例函数,其中k叫比例系数。练习:(学生讨论并回答)下列式子,哪些表示y是x的正比例函数?如果是,请你指出正比例系数k的值(1) (2) (3) (4)(5) (6) (7) (8)(教师讲解) 归纳:正比例函数中:形式是y=kx 比例系数不等于0 自变量的指数为1四、例题讲解:例1:若是y关于x的正比例函数,则m ,n 练习:(小组讨论并回答)(1)如果y=(m-1)x是y关于x的正比例函数,则m_。(2)如果是y关于x的正比例函数,当x=3时,函数值是 。(3)如果是y关于x的正比例函数,则函数解析式是 。例2:已知y关于x成正比例函数,当x=2时,y=8,求函数解析式。(教师讲解,强调格式)归纳:待定系数法:设解析式,代入条件,解出比例系数,回答解析式练习:若y关于x成正比例函数,当x=4时,y=-2.(1)求出y与x的关系式;(2)当x=6时,求出对应的函数值y.(学生板演)拓展练习:1、已知y与x-1成正比例,且当x=2时,y=-6,求y与x之间的函数关系式2、若y=y1+y2,y1与x成正比例,y2与x-2成正比例,当x=1时,y=1,当x=3时,y=7。求当x=-2时y的函数值。五、课堂小结:什么是正比例函数? 如何求正比例函数的解析式?(学生齐答)【板书设计】19.2.1正比例函数概念:y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论