

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知识点拨:利用导数求函数的极值例 求下列函数的极值:1;2;3分析:按照求极值的基本方法,首先从方程求出在函数定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值解:1函数定义域为r令,得当或时,函数在和上是增函数;当时,函数在(2,2)上是减函数当时,函数有极大值,当时,函数有极小值2函数定义域为r令,得或当或时,函数在和上是减函数;当时,函数在(0,2)上是增函数当时,函数取得极小值,当时,函数取得极大值3函数的定义域为r令,得当或时,函数在和上是减函数;当时,函数在(1,1)上是增函数当时,函数取得极小值,当时,函数取得极大值说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性解答本题时应注意只是函数在处有极值的必要条件,如果再加之附近导数的符号相反,才能断定函数在处取得极值反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园双减安全管理制度
- 校园学生团队管理制度
- 校园建筑安全管理制度
- 校园活动餐饮管理制度
- 校园疫情期间管理制度
- 校园蔬菜清洗管理制度
- 校园门口日常管理制度
- 校外培训应急管理制度
- 2025年6月中级银行从业资格考试《个人理财》真题卷
- 区域创新网络演化-洞察及研究
- 国家机关政府部门公文格式标准(2021最新建议收藏!)
- 混凝土养护记录范文
- 航图zuck-2a目视停靠引导系统飞行员指南
- 国开作业《公共关系学》实训项目3:社区关系建设(六选一)-实训项目二社区关系建设方案-参考(含答案)98
- 《历史文化名城名镇名村保护规划编制要求》
- 《数据科学与大数据技术导论》完整版课件(全)
- 申请人申请仲裁送达信息确认书
- (完整版)生物同源性荷尔蒙替代疗法课件
- 福建跨学科四门主干课程作业及答案小学语文
- 燃气输配课程设计报告书
- DB61∕T 5006-2021 人民防空工程标识标准
评论
0/150
提交评论