高考数学大一轮复习 第六章 平面向量与复数 34 平面向量的基本定理及坐标运算课件 文.ppt_第1页
高考数学大一轮复习 第六章 平面向量与复数 34 平面向量的基本定理及坐标运算课件 文.ppt_第2页
高考数学大一轮复习 第六章 平面向量与复数 34 平面向量的基本定理及坐标运算课件 文.ppt_第3页
高考数学大一轮复习 第六章 平面向量与复数 34 平面向量的基本定理及坐标运算课件 文.ppt_第4页
高考数学大一轮复习 第六章 平面向量与复数 34 平面向量的基本定理及坐标运算课件 文.ppt_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章平面向量与复数 第34课平面向量的基本定理及坐标运算 课前热身 激活思维 3 1 6 21 3 必修4p87习题1改编 已知向量a 1 2 b 3 1 那么 2a 3b 7 5 5 必修4p79练习4改编 已知平行四边形abcd的顶点a 1 2 b 3 1 c 5 6 那么顶点d的坐标为 1 5 1 平面向量的基本定理e1 e2是同一平面内两个不共线的向量 那么对于这一平面内的任一向量a 有且只有一对实数 1 2 使得 其中不共线的向量e1 e2叫作表示这一平面内所有向量的一组基底 知识梳理 a 1e1 2e2 2 平面向量的坐标形式在平面直角坐标系内 分别取与x轴 y轴方向相同的两个单位向量i j作为基底 对平面内任意一个向量a 有且只有一对实数x y 使得a 向量的分量表示 记作a x y 向量的坐标表示 其中x叫作a的横坐标 y叫作a的纵坐标 xi yj 3 平面向量的坐标运算 1 设a x1 y1 b x2 y2 则a b a b a x1 x2 y1 y2 x1 x2 y1 y2 x1 y1 x2 x1 y2 y1 课堂导学 平面向量基本定理的应用 例1 精要点评 应用平行向量的基本定理及向量的多边形加法法则是解决本题的关键 平面向量的坐标运算 例2 解答 由已知得a 5 5 b 6 3 c 1 8 1 3a b 3c 3 5 5 6 3 3 1 8 6 42 2 求满足a mb nc的实数m n的值 解答 因为mb nc 6m n 3m 8n 精要点评 向量的坐标运算主要是利用加 减 数乘运算法则进行 若已知有向线段两端点的坐标 则应先求出向量的坐标 解题过程中要注意方程思想的运用及正确使用运算法则 2015 江苏卷 已知向量a 2 1 b 1 2 若ma nb 9 8 m n r 则m n的值为 变式1 3 2016 苏州暑假测试 设x y r 向量a x 1 b 2 y 且a 2b 5 3 则x y 变式2 1 利用平面向量的坐标表示解综合问题 例3 当点m在第二或第三象限时 有4t2 0 2t1 4t2 0 故所求的充要条件为t2 0且t1 2t2 0 2 求证 当t1 1时 无论t2为何实数 a b m三点都共线 因为s abm 12 变式 备用例题 解答 如图 2 过点p作x轴 y轴的平行线 2 过点p作直线l分别与x轴 y轴正方向交于点a b 试确定a b的位置 使 oab的面积最小 并求出此最小值 精要点评 平面向量基本定理反映了向量中可以用两个向量表示第三个向量 并且其中有相应的等量关系存在 解题时要善于发现并加以利用 课堂评价 1 若e1 e2是表示平面内所有向量的一组基底 则下列给出的四组向量中不能作为基底的是 填序号 e1 e2和e1 e2 3e1 2e2和4e2 6e1 e1 3e2和e2 3e1 e2和e1 e2 7 4 2 2 若a b c三点的坐标分别为 2 2 5 2 3 0 求点p的坐标 解答 因为a 2 2 b 5 2 c 3 0 m为bc的中点 微探究6平面向量基本定理的应用 问题提出平面向量的基本定理是研究向量的基础 也是高考常考的知识点 如何运用平面向量基本定理解决有关问题是向量复习的重点 典型示例 思维导图 总结归纳 1 用平面向量基本定理解决问题的一般思路是 先选择一组基底 再用该基底表示向量 其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算 2 特别注意基底的不唯一性 只要两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论