


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.3二项式定理典例精析题型一二项展开式的通项公式及应用【例1】 已知的展开式中,前三项系数的绝对值依次成等差数列.(1)求证:展开式中没有常数项;(2)求展开式中所有的有理项. 【解析】由题意得2c1c()2,即n29n80,所以n8,n1(舍去). 所以tr1()()r(1)r(0r8,rz).(1)若tr1是常数项,则0,即163r0,因为rz,这不可能,所以展开式中没有常数项.(2)若tr1是有理项,当且仅当为整数,又0r8,rz,所以 r0,4,8,即展开式中有三项有理项,分别是t1x4,t5 x,t9 x-2.【点拨】(1)把握住二项展开式的通项公式,是掌握二项式定理的关键.除通项公式外,还应熟练掌握二项式的指数、项数、展开式的系数间的关系、性质;(2)应用通项公式求二项展开式的特定项,如求某一项,含x某次幂的项,常数项,有理项,系数最大的项等,一般是应用通项公式根据题意列方程,在求得n或r后,再求所需的项(要注意n和r的数值范围及大小关系);(3) 注意区分展开式“第r1项的二项式系数”与“第r1项的系数”.【变式训练1】若(x)n的展开式的前3项系数和为129,则这个展开式中是否含有常数项,一次项?如果有,求出该项,如果没有,请说明理由.【解析】由题知cc2c22129,所以n8,所以通项为tr1c(x)8-r ,故r6时,t726cx1 792x,所以不存在常数项,而存在一次项,为1 792x.题型二运用赋值法求值【例2】(1)已知(1x)(1x)2(1x)na0a1xa2x2anxn,且a1a2an129n,则n;(2)已知(1x)na0a1xa2x2anxn,若5a12a20,则a0a1a2a3(1)nan. 【解析】(1)易知an1,令x0得a0n,所以a0a1an30.又令x1,有2222na0a1an30,即2n1230,所以n4.(2)由二项式定理得,a1cn,a2c,代入已知得5nn(n1)0,所以n6,令x1得(11)6a0a1a2a3a4a5a6,即a0a1a2a3a4a5a664.【点拨】运用赋值法求值时应充分抓住代数式的结构特征,通过一些特殊值代入构造相应的结构.【变式训练2】设(3x1)8a0a1xa2x2a7x7a8x8.求a0a2a4a6a8的值.【解析】令f(x)(3x1)8,因为f(1)a0a1a2a828,f(1)a0a1a2a3a7a848,所以a0a2a4a6a827(128).题型三二项式定理的综合应用【例3】求证:46n5n19能被20整除.【解析】46n5n194(6n1)5(5n1)4(51)n15(41)n120(5n1c5n2c)(4n1c4n2c),是20的倍数,所以46n5n19能被20整除.【点拨】用二项式定理证明整除问题时,首先需注意(ab)n中,a,b中有一个是除数的倍数;其次展开式有什么规律,余项是什么,必须清楚.【变式训练3】求0.9986的近似值,使误差小于0.001.【解析】0.9986(10.002)616(0.002)115(0.002)2(0.002)6.因为t3c(0.002)215(0.002)20.000 060.001, 且第3项以后的绝对值都小于0.001,所以从第3项起,以后的项都可以忽略不计.所以0.9986(10.002)616(0.002)10.0120.988.总结提高1.利用通项公式可求展开式中某些特定项(如常数项、有理项、二项式系数最大项等),解决这些问题通常采用待定系数法,运用通项公式写出待定式,再根据待定项的要求写出n、r满足的条件,求出n和r,再确定所需的项;2.赋值法是解决二项展开式的系数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年业务外包人员岗前安全培训考试卷及答案
- 2025年机场地勤员专业技能考试试题及答案
- 2025年中国民航大学飞行技术模拟驾驶试题及答案
- 高铁站建筑施工劳务合同(3篇)
- 高空施工作业承揽合同(3篇)
- 个人汽车消费贷款合同展期与售后服务协议
- 慈善活动危机公关处理与公益活动效果评估合同
- 民办学校教职工劳动权益保障与薪酬待遇调整合同范本
- 参考教案-根本政治制度
- 护师专业考试试题及答案
- 2025年时事政治考试100题及答案
- 护理员安全培训内容课件
- 农业产业强镇建设资金申请项目可行性研究及风险评估报告
- 2025年全国中小学校党组织书记网络培训示范班在线考试题库及答案
- 身边安全隐患课件
- 2025-2026学年苏教版(2024)小学科学三年级上册(全册)每课教学反思
- GB/T 46025-2025家用轮椅床
- 2025全国农业(水产)行业职业技能大赛(水生物病害防治员)选拔赛试题库(含答案)
- YY∕T 0953-2020 医用羧甲基壳聚糖(高清正版)
- 生物医学工程导论课件
- 宠物市场调研报告
评论
0/150
提交评论