高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(二)学案 苏教版必修4.doc_第1页
高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(二)学案 苏教版必修4.doc_第2页
高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(二)学案 苏教版必修4.doc_第3页
高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(二)学案 苏教版必修4.doc_第4页
高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(二)学案 苏教版必修4.doc_第5页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3.3函数yasin(x)的图象(二)学习目标1.会用“五点法”画函数yasin(x)的图象.2.能根据yasin(x)的部分图象,确定其解析式知识链接由函数ysin x的图象经过怎样的变换得到函数ysin(x)(0)的图象?答ysin x的图象变换成ysin(x)(0)的图象一般有两个途径:途径一:先相位变换,再周期变换先将ysin x的图象向左(0)或向右(0)或向右(0,0)的性质如下:定义域r值域a,a周期性t奇偶性k (kz)时是奇函数;k (kz)时是偶函数;当(kz)时是非奇非偶函数单调性单调增区间可由2kx2k (kz)得到,单调减区间可由2kx2k(kz)得到要点一“五点法”作yasin(x)的简图例1用“五点法”作出函数y2sin的简图,并指出该函数的单调区间解(1)列表如下:2x02xy02020(2)描点、连线,如图由图象知,在一个周期内,函数在上单调递减,函数在上单调递增又因为函数的周期为,所以函数的单调递减区间为(kz);单调递增区间为(kz)规律方法用“五点法”画函数yasin (x)(xr)的简图,先作变量代换,令xx,再用方程思想由x取0,2来确定对应的x值,最后根据x,y的值描点、连线画出函数的图象跟踪演练1作出函数ysin在长度为一个周期的闭区间上的图象解列表:xx02x47ysin000描点画图(如图所示):要点二求函数yasin(x)的解析式例2函数yasin(x)的图象的一部分如图所示,求此函数的解析式解方法一(逐一定参法)由图象知a3,t,2,y3sin(2x)点在函数图象上,且为第一个特值点,03sin.2k,得k(kz)|0,0,|)的图象,根据图中条件,写出该函数解析式解由图象知a5.由,得t3,.y5sin(x)下面用两种方法求:方法一(单调性法)点(,0)在递减的那段曲线上,2k,2k(kz)由sin()0,得2k(kz),2k(kz)|,.方法二(最值点法)将最高点坐标(,5)代入y5sin(x),得5sin()5,2k(kz),2k(kz)|0,0)为偶函数,则满足的条件是_答案k(kz)2函数ysin(x)(xr,0,02)的部分图象如图,则_,_.答案解析由所给图象可知,2,t8.又t,.图象在x1处取得最高点,2k(kz),2k(kz),00)的最小正周期为,则该函数的图象说法正确的有_关于点对称;关于直线x对称;关于点对称;关于直线x对称答案4作出y3sin在一个周期上的图象解(1)列表:x02x3sin03030描点、连线,如图所示:1.由函数yasin(x)的部分图象确定解析式关键在于确定参数a,的值(1)一般可由图象上的最大值、最小值来确定|a|.(2)因为t,所以往往通过求周期t来确定,可通过已知曲线与x轴的交点从而确定t,即相邻的最高点与最低点之间的距离为;相邻的两个最高点(或最低点)之间的距离为t.(3)从寻找“五点法”中的第一零点(也叫初始点)作为突破口以yasin(x)(a0,0)为例,位于单调递增区间上离y轴最近的那个零点最适合作为“五点”中的第一个点2在研究yasin(x)(a0,0)的性质时,注意采用整体代换的思想例如,它在x2k (kz)时取得最大值,在x2k (kz)时取得最小值一、基础达标1已知简谐运动f(x)2sin(|)的图象经过点(0,1),则该简谐运动的最小正周期t和初相分别为t_,_.答案6解析t6,代入(0,1)点得sin .,.2函数图象的一部分如下图所示,则符合题意的解析式是_ysin;ysin;ycos;ycos.答案解析由图知t4,2.又x时,y1,经验证只有符合3若函数ysin(x)(0)的部分图象如图,则_.答案4解析设函数的最小正周期为t,由函数图象可知x0,所以t.又因为t,可解得4.4已知a是实数,则函数f(x)1asin ax的图象可能是_答案解析当a0时f(x)1,符合,当0|a|2,且最小值为正数,符合,当|a|1时t2,符合5函数ysin与y轴最近的对称轴方程是_答案x解析令2xk(kz),x(kz)由k0,得x;由k1,得x.6函数ycos(2x)(0,0)上的一个最高点的坐标为,此点到相邻最低点间的曲线与x轴交于点,若.(1)试求这条曲线的函数表达式;(2)用“五点法”画出(1)中函数在0,上的图象解(1)由题意知a,t4,2,ysin(2x)又sin1,2k,kz,2k,kz,又,ysin.(2)列出x、y的对应值表:x2x02y000描点、连线,如图所示:二、能力提升8如果函数ysin 2xacos 2x的图象关于直线x对称,那么a_.答案1解析方法一函数ysin 2xacos 2x的图象关于x对称,设f(x)sin 2xacos 2x,则ff(0),sinacossin 0acos 0.a1.方法二由题意得ff,令x,有ff(0),即a1.9函数f(x)2sin(x),的部分图象如图所示,则,的值分别是_答案2,解析由图象知t,解得t.由t,解得2,得函数表达式为f(x)2sin(2x)又因为当x时取得最大值2,所以2sin2,可得2k(kz)因为,所以取k0,得.10关于f(x)4sin (xr),有下列命题:由f(x1)f(x2)0可得x1x2是的整数倍;yf(x)的表达式可改写成y4cos;yf(x)图象关于对称;yf(x)图象关于x对称其中正确命题的序号为_答案解析对于,由f(x)0,可得2xk (kz)x,x1x2是的整数倍,错;对于,f(x)4sin利用公式得:f(x)4cos4cos.对;对于,f(x)4sin的对称中心满足2xk,kz,x,kz.是函数yf(x)的一个对称中心,对;对于,函数yf(x)的对称轴满足2xk,kz.x,kz,错11函数yasin(x)(a0,0,|)的最小值为2,其图象相邻的最高点与最低点横坐标差是3,又图象过点(0,1),求函数的解析式解由于最小值为2,所以a2.又相邻的最高点与最低点横坐标之差为3.故t236,从而,y2sin.又图象过点(0,1),所以sin ,因为|0,0,|)的图象过点p(,0),图象与p点最近的一个最高点坐标为(,5)(1)求函数解析式;(2)指出函数的增区间;(3)求使y0的x的取值范围解(1)图象最高点坐标为(,5),a5.,t.2.y5sin(2x)代入点(,5),得sin()1.2k(kz)由|0,0)是r上的偶函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论