【世纪金榜】高三数学总复习阶段滚动检测(四)文 新人教A版.doc_第1页
【世纪金榜】高三数学总复习阶段滚动检测(四)文 新人教A版.doc_第2页
【世纪金榜】高三数学总复习阶段滚动检测(四)文 新人教A版.doc_第3页
【世纪金榜】高三数学总复习阶段滚动检测(四)文 新人教A版.doc_第4页
【世纪金榜】高三数学总复习阶段滚动检测(四)文 新人教A版.doc_第5页
免费预览已结束,剩余13页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【世纪金榜】2016届高三数学总复习阶段滚动检测(四)文 新人教a版一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(滚动交汇考查)等比数列an中,“a1a3”是“a4b,则bd=()a.2或4b.1或3c.3或2d.4或18.(2015杭州模拟)如图,在正三棱锥a-bcd中,e,f分别是ab,bc的中点,efde,且bc=1,则正三棱锥a-bcd的体积是()a.b.c.d.9.(滚动单独考查)在abc中,ab=ac=2,b=30,p为bc边中线上的任意一点,则的值为()a.-12b.-6c.6d.1210.已知正四棱锥s-abcd中,sa=2,那么当棱锥的体积最大时,点s到平面abcd的距离为()a.1b.c.2d.311.(2015长沙模拟)已知正四棱柱abcd-a1b1c1d1的底面边长ab=6,aa1=2,它的外接球的球心为o,点e是ab的中点,点p是球o上任意一点,则下列说法错误的是()a.pe的最大值为9b.三棱锥p-ebc体积的最大值为c.存在过点e的平面,截球o的截面面积为9d.三棱锥p-aec1体积的最大值为2012.(滚动交汇考查)设f(x)=|lnx|,若函数g(x)=f(x)-ax在区间(0,3上有三个零点,则实数a的取值范围是()a.(0,)b.,)c.(0,d.(,e)二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(滚动单独考查)已知函数f(x)为奇函数,且当x0时,f(x)=lnx,则f(f()=.14.(2015乐山模拟)已知一个几何体的三视图如图所示,则该几何体的体积为cm3.15.(2015西安模拟)某几何体的三视图如图,则该几何体体积的最大值为.16.(滚动单独考查)设0m,若+k恒成立,则k的最大值为.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(滚动单独考查)已知向量a=(sin,),b=(cos-sin,1),函数f(x)=ab,abc三个内角a,b,c的对边分别为a,b,c.(1)求f(x)的单调递增区间.(2)若f(b+c)=1,a=,b=1,求abc的面积s.18.(12分)(2015北京模拟)如图,已知四边形abcd和四边形bceg均为直角梯形,adbc,cebg,且bcd=bce=,平面abcd平面bceg,bc=cd=ce=2ad=2bg=2.(1)求证:eccd.(2)求证:ag平面bde.(3)求几何体eg-abcd的体积.19.(12分)如图,五面体中,四边形abcd是矩形,da平面abef,且da=1,abef,ab=ef=2,af=be=2,p,q,m分别为ae,bd,ef的中点.(1)求证:pq平面bce.(2)求证:am平面adf.20.(12分)(滚动单独考查)数列an中,已知a1=2,当n2时,an=an-1+.数列bn满足bn=3n-1an(nn*).(1)证明:数列bn为等差数列,并求bn的通项公式.(2)求数列an的前n项和sn.21.(12分)(2015青岛模拟)四棱锥p-abcd中,ab=2dc=4,ac=2ad=4,bc=8,平面pad底面abcd,m为棱pb上任一点.(1)证明:平面amc平面pad.(2)若pad为等边三角形,平面amc把四棱锥p-abcd分成两个几何体,当这两个几何体的体积之比vpm-acdvm-abc=114时,求的值.22.(12分)(滚动单独考查)已知函数f(x)=lnx.(1)若直线y=x+m与函数f(x)的图象相切,求实数m的值.(2)证明:曲线y=f(x)与曲线y=x-有唯一的公共点.(3)设0ab,比较与的大小,并说明理由.答案解析1.d在等比数列中,由a1a3可得a1a1q2,则q可取正也可取负,不能推出a4a6,而由a4a6可得a1q3a1q5;两者之间的大小关系取决于q的正负取值情况,故不能相互推出,则知“a1a3”是“a40,如图,不等式组对应的平面区域为obc,其中b(a,a),c(a,-a),所以bc=2a,所以obc的面积为a2a=a2=4,所以a=2.由z=2x+y得y=-2x+z,平移直线y=-2x,由图象可知当直线y=-2x+z经过点b时,直线截距最大,此时z也最大,把b(2,2)代入z=2x+y得z=22+2=6.【加固训练】已知直线(m+2)x+(m+1)y+1=0上存在点(x,y)满足则实数m的取值范围为()a.-,+)b.(-,-c.-1,d.-,b作出不等式组表示的可行域如图中阴影部分(含边界)所示,又直线l:(m+2)x+(m+1)y+1=0过定点(-1,1),结合图形可知,点(1,2),(1,-1)在直线l的两侧或其中一点在l上,即(m+2)1+(m+1)2+1(m+2)1+(m+1)(-1)+10,解得m-.6.a由几何体的直观图,可知该几何体可以看作由正方体abcd-a1b1c1d1割掉四个角后所得的几何体abcd-mnpq,如图所示,该几何体的正视图就是其在正方体的面cdd1c1上的投影,显然为正方形cdd1c1与cdq的组合;该几何体的侧视图就是其在面bcc1b1上的投影,显然为正方形bcc1b1和bcp的组合.综上,只有a选项正确,故选a.【加固训练】将一个底面是正三角形且侧棱垂直于底面的三棱柱abc-def截去一个三棱锥c-abd,得到几何体bc-def(如图),则该几何体的正视图是()c从正前方观察截去三棱锥后的几何体,可知正确选项为c.7.【解题提示】先由正弦定理求b,再由余弦定理构建关于bd的方程求解.b在abc中,由正弦定理,得sinb=,所以b=45或b=135.又bacb,所以b=45.因为ad=,则在abd中,由余弦定理得ad2=ab2+bd2-2abbdcos45,即5=8+bd2-22bdcos45,解得bd=1或bd=3.8.【解题提示】根据ef与de的垂直关系,证明acde,再证acab,再求得侧棱长,根据体积公式计算即可.b因为e,f分别是ab,bc的中点,所以efac,又efde,所以acde.取bd的中点o,连接ao,co,所以在正三棱锥a-bcd中,aobd,cobd,所以bd平面aoc,又ac平面aoc,所以acbd.又debd=d,所以ac平面abd,所以acab.设ac=ab=ad=x,则x2+x2=1x=,所以vc-abd=sabdac=abadac=.9.b取bc的中点为o,连接ao,则aobc,ob=oc=,以o为原点,方向分别为x,y轴正方向建立直角坐标系,则b(-,0),c(,0),设p(0,x0),所以=(-,x0),=(2,0),则=(-,x0)(2,0)=-6.10.【解题提示】以点s到平面abcd距离h为变量,构建以v为因变量的函数,然后用导数求最值.c设点s到平面abcd的距离为h,底面对角线长为l,则h2+=(2)2,得l=2(0h1时,f(x)=lnx,f(x)=.令y=ax与f(x)=lnx(x1)相切,设切点为(x0,y0),则f(x0)=,所以切线方程为y=x,即当y=f(x)与y=ax相切时,a=,当x=3时,直线y=ax过(3,ln3),代入得a=,所以函数g(x)在区间(0,3上有3个交点时a的取值范围为,).【加固训练】已知f(x)=且函数y=f(x)+x恰有3个不同的零点,则实数a的取值范围是()a.(-,1b.(0,1c.(-,0d.(-,2a当x0时,f(x)=(x+1)2+a-1,把函数f(x)在-1,0)上的图象向右平移一个单位即得函数f(x)在0,1)上的图象,继续右移可得函数f(x)在0,+)上的图象.由于函数y=f(x)+x恰有3个不同的零点,即函数y=f(x),y=-x的图象有3个不同的交点,则实数a应满足a-10,即a1.13.【解析】由题意可知函数f(x)为奇函数,所以f(-x)=-f(x),又f()=ln=-2,所以f(f()=f(-2)=-f(2)=-ln2.答案:-ln214.【解析】该几何体为圆柱挖去半个球而得的组合体,其体积为v=123-=(cm3).答案:15.【解析】由三视图知该几何体为三棱锥,记为s-abc,其中sa平面abc,底面abc为直角三角形,且bac=90.则ab=1,设sa=x,ac=y,则x2+y2=6.利用不等式得x2+y2=62xy,所以xy3.又体积v=abacsa=xy3=.答案:16.【解析】令t=+,因为+k恒成立,所以tmink恒成立,t=+=+=(+)(2m+1-2m)=2(2+),因为0m0,1-2m0,所以+2(当且仅当=,即m=时取等号),所以t8,所以k8,所以k的最大值为8.答案:817.【解析】(1)由题意得,f(x)=ab=sin(cos-sin)+=sincos-sin2+=sinx-+=sinx+cosx=sin(x+).令2k-x+2k+(kz),解得2k-x2k+(kz),所以函数f(x)的单调递增区间为2k-,2k+(kz).(2)因为f(b+c)=1,所以sin(b+c+)=1,又b+c(0,),b+c+(,),所以b+c+=,b+c=,所以a=,由正弦定理得=,把a=,b=1代入上式,得sinb=,故b=或b=,因为a=为钝角,所以b=舍去,所以b=,得c=.所以,abc的面积s=absinc=1=.【一题多解】本题还可采用如下方法求解.由余弦定理得,a2=b2+c2-2bccosa,得3=1+c2+c,c=1或-2(舍去),所以abc的面积s=bcsina=11=.18.【解析】(1)因为平面abcd平面bceg,又平面abcd平面bceg=bc,cebc,ce平面bceg,所以ec平面abcd,又cd平面abcd,故eccd.(2)如图,在平面bceg中,过g作gnce交be于m,连接dm,则由已知可得:mg=mn,mnbcda,且mn=ad=bc,所以mgad,mg=ad,故四边形admg为平行四边形,所以agdm,因为dm平面bde,ag平面bde,所以ag平面bde.(3)veg-abcd=vd-bceg+vg-abd=s四边形bcegdc+sabdbg=22+121=.【加固训练】在如图所示的几何体中,四边形bb1c1c是矩形,bb1平面abc,ca=cb;a1b1ab,ab=2a1b1,e,f分别是ab,ac1的中点.(1)求证:ef平面bb1c1c.(2)求证:c1a1平面abb1a1.【证明】(1)连接bc1,因为e,f分别是ab,ac1的中点,所以efbc1.又ef平面bb1c1c,bc1平面bb1c1c,所以ef平面bb1c1c.(2)连接a1e,ce.因为bb1平面abc,bb1平面abb1a1,所以平面abb1a1平面abc,因为ca=cb,e是ab的中点,所以ceab,所以ce平面abb1a1.因为b1a1ba,b1a1=ba=be,所以四边形a1ebb1为平行四边形,所以bb1a1e.又bb1cc1,所以a1ecc1,所以四边形a1ecc1为平行四边形,则c1a1ce,所以c1a1平面abb1a1.19.【证明】(1)连接ac,因为四边形abcd是矩形,q为bd的中点,所以q为ac的中点,又在aec中,p为ae的中点,所以pqec.因为ec平面bce,pq平面bce,所以pq平面bce.(2)因为m为ef的中点,所以em=ab=2,又efab,所以四边形abem是平行四边形,所以ambe,am=be=2.又af=2,mf=2,所以maf是直角三角形且maf=90,所以maaf.又da平面abef,ma平面abef,所以mada,又daaf=a,所以am平面adf.20.【解析】(1)当n=1时,b1=30a1=2.当n2时,an=an-1+,两边同乘以3n-1得,3n-1an=3n-2an-1+2,即bn-bn-1=2(n2).所以数列bn是以2为首项,以2为公差的等差数列,其通项公式为bn=2+(n-1)2=2n.(2)由(1)得bn=3n-1an=2n,所以an=.sn=2+4+2(n-1)+2n,sn=2+4+2(n-1)+2n,-,得sn=2+2+2-2n=2-2n=3-.所以sn=-.21.【解析】(1)在acd中,因为ac2+ad2=16+4=20=cd2,所以acad.因为平面pad底面abcd,且平面pad平面abcd=ad,所以ac平面pad.又ac平面amc,所以平面amc平面pad.(2)如图,取ad中点e,连接pe,则pead,pe平面abcd,且pe=.连接be,则平面pbe平面abcd,过m作mnbe于n,则mn平面abcd.在abc中,ac2+bc2=16+64=80=ab2,所以acbc,vp-abcd=s梯形abcdpe=(24+48)=.vm-abc=sabcmn=48mn=mn.由vpm-acdvm-abc=114得,vp-abcdvm-abc=154,即mn=154,解得,mn=.在peb中,因为=,所以=.22.【解析】(1)f(x)=,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论