




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
探索与发现:三角形边的关系教材分析:三角形边的关系是义务教育课程标准实验教科书北师大版四年级下册P2728页的内容。教材出示了4组长短不同的三根小棒,通过摆三角形,引出研究三角形三边之间关系的数学问题。通过在小组内摆一摆、算一算、比一比等活动,探索并发现三角形任意两边的和大于第三边。学生能应用发现的结论,来判断指定长度的三条线段,能否组成三角形。学情分析:学生已认识了各种类型的三角形,对三角形任意两边的和大于第三边的性质有一些浅显的生活经验,但并不真正理解其具体含义。三角形边的关系是在学生经历过三角形的内角和是180度的探究过程的基础上进行的第二次探究发现活动,学生已具备初步的探究能力和强烈的探究欲望。教学目标:1、 经历三角形三边关系的探索过程,知道三角形任意两边之和大于第三边,会判断给定长度的三条线段是否能围成三角形。2、 结合动手实验、交流讨论等探索活动,提高学生观察、操作、独立思考、推理、归纳概括能力。3、 让学生经历数学学习的过程,感受数学与实际的紧密联系,在学习培养学生应用数学的意识以及团结协助的精神。教学重点:探索并发现三角形任意两边之和大于第三边。教学难点:利用三角形三边之间的关系解决实际问题。教法学法:操作法、验证法、小组合作法、探究法、练习法。教具学具:多媒体课件、小棒(2、4、5、6厘米长的小棒各1根,3厘米长的小棒2根,同样长的小棒6根)一、 导入师提问:同学们,昨天是笑笑的生日,晚上爸爸妈妈为她举办了一个盛大的生日聚会,所以下午放学后笑笑迫不及待的背上书包回家了。猜一猜笑笑昨天回家走的哪条路?(课件出示)(请一同学回答)追问:笑笑选这条路是因为里面隐藏了一个我们学过的哪个数学知识?(两点之间线段最短)。这几条路刚好是三角形的三条边,所以这里面其实还隐藏了跟三角形边的关系有关的数学知识。这节课我们就一起来探索发现三角形边的关系(板书课题:三角形边的关系)二、新知探究1、因为三角形有三条边,所以三根小棒就一定能围成三角形吗?情况1:不一定,追问:不一定是什么意思?(可能能也可能不能)情况2:一定。2、生动手操作,验证结论。(1)、小组合作:用三根小棒摆三角形,都能摆成吗?试一试操作完成后展示交流 重点讲解6、3、3这组。(课件展示)追问:2、4、6可以吗?3 、5 、8呢?由此发现用三根小棒摆三角形时还要考虑什么?(小棒的长度)(2)、观察这四组,小组互相探讨怎样的3根小棒能摆成一个三角形?把结论用一句话总结出来。引导学生得出:较短的两根小棒的长度之和大于长的那根小棒的长度时能摆成三角形。(3)、结合数据,算一算、填一填完成学习单(生填完后和黑板上的答案对照更正)观察这四组算式,想一想能摆成三角形的3根小棒长度之间有什么关系?组内互相探讨、说一说。引导学生得出:任意两根小棒的长度之和大于第三根小棒的长度师追问:“任意”是什么意思?这两组没有摆成是因为没有做到我们这个发现中的那个词呢?(任意)(4)、当我们用三根小棒摆成三角形时这三根小棒的长度其实就是三角形的三条边,用一句话说一说三角形的三条边之间有什么关系?引导学生总结出:三角形任意两边之和大于第三边。三、 练习巩固虽然通过大家的共同努力我们发现了三角形边的关系,但是学以致用才能我们最终目的,请你帮我判断下这三根小棒能摆成三角形吗?1、课本28页第1题课件出示课本练一练第1题,点名生回答后师追问:你是根据那个数学知识判断出来的?哪个算式能说明问题?2、 课本28页第2题生独立完成后全班展示交流。追问:能拼成的三角形是什么三角形?3、课本28页第3题(生在学习单上完成)小组合作,完成后全班展示交流。4、 课本28页第4题小组讨论得出答案后全班交流追问:你是根据那个数学知识知道第三条边的长度小于13厘米的?(三角形任意两边之和大于第三边)追问:3厘米行不行?(不行,因为3+5=8)那应该比3厘米要(长一些)。所以在哪个范围内的长度都可以?(大于3厘米小于13厘米)两边之和大于第三边做到了任意,两边之差小于第三边需要做到任意吗?请学生在这个范围内找个数字和5厘米8厘米这两条边一起组成三角形的三条边算一算比一比,看看是否任意两边之差小于第三边。(同桌一起在学习单上算一算、比一比得出结论)验证后师总结:所以第三条边的长度小于其他两条边的长度之和、大于其他两条边的长度之差。四、 小结1、我们今天通过摆一摆、算一算、比一比等活动发现了“三角形边的关系”,一起把我们的发现读一读吧:“三角形任意两边之和大于第三边”。现在你能说说笑笑选择走这条路其实还隐藏了什么数学知识吗?(三角形任意两边之和大于第三边)2、课件展示“十字路口”情境图师:所以我要从A处到D处这样走更好?(不行)三角形任意两边之和大于第三边我这样走不是最近吗?我这样走为什么不行?(没有斑马线,违反交通规则)生回答后师总结:看来我们要想将数学知识运用于生活中还必须要和生活实际相结合。事实上2007在我国浙江省杭州市出现了我国第一条对角斑马线,行人可以直接斜穿到对面极大的方便了行人。(课件出示图片)而且你们知道吗,这种对角斑马线的设计者是一位交警叔叔,他的设计原理里隐含了一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隆昌市知行中学2025-2026学年度第一学期初中八年级第一次月考数学试题(组卷)参考答案及评分意见
- 达尔文进化论课件
- 基于区块链技术的逆向物流溯源体系对回收率的提升机制探析
- 城市地下管廊出线盒抗震性能与防水密封的协同失效机制分析
- 可降解环保材料在切边齿形带中的应用潜力及降解性能评估体系
- 可持续生产模式探索:刀豆球蛋白生物发酵过程碳足迹与废弃物资源化
- 反应性稀释剂在微流控芯片中的可控聚合机制与工业转化瓶颈
- 反光轮廓标全生命周期碳足迹追踪与绿色供应链重构路径
- 双碳目标下的切换柜轻量化设计挑战与再生材料应用边界探索
- 区域产业集群发展模式对氟苯衍生物成本曲线的重构
- 凝聚法治共识说课课件
- 2025年三级筑路工职业技能鉴定考试题库(含答案)
- CJ/T 447-2014管道燃气自闭阀
- 四肢骨折护理要点及规范
- 消防经济学试题及答案
- GenAI时代趋势中的TiDB
- 《麦克风培训资料》课件
- 口腔综合治疗台水路清洗消毒技术规范
- 心理课堂-情绪ABC理论教案
- 村消防安全管理工作制度
- 虚拟电厂控制系统用户手册
评论
0/150
提交评论