



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.2反证法1了解间接证明的一种基本方法反证法,了解反证法的思考过程、特点2掌握反证法证题的步骤以及哪些类型的题目宜用反证法证明反证法的定义:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法称为反证法1命题“关于x的方程axb(a0)有唯一解”的结论的否定是(D)A无解 B两解C至少两解 D无解或至少两解解析:易知此命题结论的否定是:无解或至少两解故选D.2已知l,a,b,若a,b为异面直线,则(B)Aa,b都与l相交 Ba,b至少有一条与l相交Ca,b至多有一条与l相交 Da,b都与l不相交解析:若a,b都与l不相交,则al,bl,ab,这与a,b为异面直线矛盾a,b至少有一条与l相交故选B.3用反证法证明“已知a3b32,求证ab2”时的反设为_,得出的矛盾为_解析:假设ab2,则a2b,a3(2b)3812b6b2b3,又a3b32,6b212b60,即6(b1)20,由此得出矛盾答案:ab26(b1)204“自然数a,b,c中恰有一个偶数”的否定应是_解析:“自然数a,b,c中恰有一个偶数”的否定应是a,b,c中都是奇数或至少有两个偶数答案:a,b,c中都是奇数或至少有两个偶数(一)用反证法证明数学命题的一般步骤(1)反设即先弄清命题的条件和结论,然后假设命题的结论不成立;(2)归谬从反设出发,经过推理论证,得出矛盾;(3)断言由矛盾得出反设不成立,从而断定原命题的结论成立反证法的关键是在正确的推理下得出矛盾,这些矛盾常常表现为以下几个方面:(1)与已知条件矛盾;(2)与假设矛盾;(3)与数学公理、定理、公式或已被证明了的结论矛盾;(4)与简单的、显然的事实矛盾(1)必须先否定结论,即肯定结论的反面,同时注意反设的准确性,尤其当出现两种以上情况时应特别细心,必须罗列出各种情况,缺少任何一种可能,反证法都是不完全的(2)必须从否定结论进行推理,即把结论的反面作为条件,并且必须依据这一条件进行推证,否则,只否定结论,不从结论的反面出发进行推理,就不是反证法(3)反证法常用于直接证明比较困难的命题,例如某些初始命题(包括部分基本定理)、必然性命题、存在性问题、唯一性问题、否定性问题、带有“至多有一个”或“至少有一个”等字眼的问题使用反证法证明问题时,准确地做出反设是正确运用反证法的前提,常见“反设词”如下:原词x成立x不成立至少一个至多一个至少n个至多n个p或qp且q反设词x0不成立x0成立一个都没有至少两个至多n1个至少n1个綈p且綈q綈p或綈q)1反证法属逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”,第二个否定是指“逻辑推理结果否定了假设”反证法属“间接解题方法”,书写格式易错之处是“假设”易错写成“设”2适合用反证法证明的命题:(1)否定性命题;(2)唯一性命题;(3)至多、至少型命题;(4)明显成立的问题;(5)直接证明有困难的命题3使用反证法证明问题时,准确地作出反设(即否定结论)是正确运用反证法的前提,常见的“结论词”与“反设词”列表如下:4.常见的矛盾主要有:(1)与假设矛盾;(2)与公认的事实矛盾;(3)与数学公理、定理、公式、定义或已被证明了的结论矛盾1应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用(C)结论相反的判断,即假设;原命题的条件;公理、定理、定义等;原结论A BC D 2用反证法证明命题“一个三角形不能有两个直角”的过程归纳为以下三个步骤:ABC9090C180,这与三角形内角和为180矛盾,所以AB90不成立;所以一个三角形中不能有两个直角;假设A,B,C中有两个直角,不妨设AB90.其中顺序正确的是(C)A BC D解析:根据反证法的步骤,容易知道选C.3在用反证法证明数学命题时,如果原命题的否定项不止一个时,必须将结论的否定情况逐一驳倒,才能肯定原命题的结论是正确的例如:在ABC中,若ABAC,P是ABC内一点,APBAPC,求证:BAPCAP.用反证法证明时应分:假设_和_两类解析:因为小于的否定是不小于,所以应填BAPCA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行写作比赛试题及答案
- 文秘专业试题及答案
- 化水专业试题及答案
- 新闻专业笔试题及答案
- 幼儿文学专业试题及答案
- 林业专业知识考试试题及答案
- 湖北省汉川市金益高级中学2025-2026学年高二上学期9月起点考试英语试卷(解析版)
- 电路专业笔试题目及答案
- 广东省汕头市潮阳区六校2024-2025学年八年级下学期5月月考地理试卷(含答案)
- 客厅吊顶平顶施工方案
- 智能会计应用课件
- 2025年日语能力测试N1级试卷:真题模拟分析与预测模拟试题
- 三方委托付工程款协议书
- 学校课后延时服务费分配细则
- 2025年化工自动化控制仪表考试题模拟考试题库及答案
- 2025中煤电力有限公司总部及所属企业招聘16人笔试参考题库附带答案详解(10套)
- 幼儿园仓库卫生管理制度
- 钾离子结合剂在慢性肾脏病患者高钾血症治疗中应用的中国专家共识重点2025
- 别墅整装交付管理办法
- 《风景谈》课件-课件
- 实验室6S培训资料
评论
0/150
提交评论