




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 1 2空间中直线与直线之间的位置关系 1 掌握空间两条直线间的位置关系 理解异面直线的定义中 不同在 的含义 2 知道两条异面直线所成角的意义 掌握两条直线垂直的含义 3 理解并掌握公理4和等角定理 并能解决有关问题 1 2 3 4 5 1 异面直线 1 概念 不同在任何一个平面内的两条直线叫做异面直线 2 图示 如图 为了表示异面直线a b不共面的特点 作图时 通常用一个或两个平面衬托 1 2 3 4 5 做一做1 如图 在长方体abcd a1b1c1d1中 与aa1异面的棱是 a abb bb1c dd1d b1c1解析 aa1 bb1 aa1 dd1 aa1 ab a aa1与b1c1是异面直线 答案 d 1 2 3 4 5 2 空间两条直线的位置关系 1 2 3 4 5 做一做2 不平行的两条直线的位置关系是 a 相交b 异面c 平行d 相交或异面解析 由于空间两条直线的位置关系是平行 相交 异面 则不平行的两条直线的位置关系是相交或异面 答案 d 1 2 3 4 5 3 公理4 1 2 3 4 5 做一做3 如图 在正方体abcd a b c d 中 e f e f 分别是ab bc a b b c 的中点 求证 ee ff 证明 在正方体abcd a b c d 中 因为e e 分别是ab a b 的中点 所以be b e 且be b e 所以四边形ebb e 是平行四边形 所以ee bb 同理可证ff bb 所以ee ff 1 2 3 4 5 4 等角定理 1 2 3 4 5 归纳总结等角定理是由平面图形推广到空间图形而得到的 当这两个角的两边方向分别相同或相反时 它们相等 否则它们互补 1 2 3 4 5 做一做4 已知 bac 30 ab a b ac a c 则 b a c a 30 b 150 c 30 或150 d 60 答案 c 1 2 3 4 5 5 两条异面直线所成的角 夹角 1 定义 已知两条异面直线a b 经过空间任一点o作直线a a b b 我们把a 与b 所成的锐角 或直角 叫做异面直线a与b所成的角 或夹角 名师点拨在定义中 空间一点o是任取的 根据等角定理 可以断定异面直线所成的角与a b 所成的锐角 或直角 相等 而与点o的位置无关 异面直线所成的角是刻画两条异面直线相对位置的一个重要的量 是通过转化为相交直线所成的角来解决的 1 2 3 4 5 2 异面直线所成的角 的范围 0 90 3 两条异面直线垂直 如果两条异面直线所成的角是直角 那么就说这两条直线互相垂直 两条互相垂直的异面直线a b 记作a b 做一做5 在长方体abcd a b c d 中 与棱aa 垂直且异面的棱有 答案 bc b c cd c d 1 2 1 对异面直线的理解剖析 异面直线是指不同在任何一个平面内的两条直线 要注意异面直线定义中 任何 两字 它指空间中的所有平面 因此异面直线也可以理解为 如果a与b是异面直线 那么在空间中找不到一个平面 使其同时经过a b这两条直线 1 2 例如 在如图所示的长方体abcd a1b1c1d1中 棱ab和b1c1所在的直线既不平行也不相交 找不到一个平面同时经过这两条棱所在的直线 则ab和b1c1是异面直线 要注意分别在两个平面内的直线不一定是异面直线 可以平行 可以相交 也可以异面 有以下方法可以判断两条直线是异面直线 1 定义法 直观判断法 由定义判断两条直线不可能在同一个平面内 或者用下面的结论 过平面外一点与平面内一点的直线 和平面内不经过该点的直线是异面直线 1 2 用符号语言表示为 b a a a a 则a与直线ab为异面直线 图形如图所示 2 排除法 排除两条直线共面 平行或相交 则这两条直线是异面直线 1 2 2 作出两条异面直线所成的角剖析 根据异面直线所成角的定义 通常在两条异面直线中的一条直线上取一点 然后作另一条直线的平行线即可 但是 在作辅助线之前最好观察图形 看看在所给的图形中 有没有满足定义的角 如果没有 再作辅助线 1 2 例如 在如图所示的正方体abcd a1b1c1d1中 直线ab和b1c1是异面直线 由于ab a1b1 则 a1b1c1就是它们所成的角 当然 abc也是它们所成的角 对于异面直线ad1和b1c来说 在图中就没有它们所成的角 这就需要作辅助线 连接bc1交b1c于点e 则bc1 ad1 故 c1ec是异面直线ad1和b1c所成的角或其补角 很明显 c1ec是等腰直角三角形 c1ec 90 即异面直线ad1和b1c所成的角为90 题型一 题型二 题型三 题型四 例1 已知三条直线a b c a与b异面 b与c异面 则a与c有什么样的位置关系 并画图说明 解 直线a与c的位置关系有三种情况 直线a与c可能平行 如图 可能相交 如图 可能异面 如图 题型一 题型二 题型三 题型四 反思判定两条直线的位置关系时 若要判定直线平行或相交 可用平面几何中的定义和方法来处理 判定异面直线的方法往往根据连接平面内一点与平面外一点的直线和这个平面内不经过此点的直线是异面直线来判断 题型一 题型二 题型三 题型四 变式训练1 如图 在正方体abcd a1b1c1d1中 判断下列直线的位置关系 1 直线a1b与直线d1c的位置关系是 2 直线a1b与直线b1c的位置关系是 3 直线d1d与直线d1c的位置关系是 4 直线ab与直线b1c的位置关系是 题型一 题型二 题型三 题型四 解析 对于 1 因为a1d1 b1c1 b1c1 bc 所以a1d1 bc 即四边形a1d1cb为平行四边形 所以a1b d1c 对于 2 因为直线a1b 平面a1b b1 平面a1b 且b1 直线a1b 直线cb1 平面a1b 所以直线a1b与直线cb1为异面直线 同理 4 中直线ab与直线b1c也是异面直线 对于 3 直线d1d与直线d1c显然相交 答案 1 平行 2 异面 3 相交 4 异面 题型一 题型二 题型三 题型四 例2 已知正方体abcd a1b1c1d1 e f分别为aa1 cc1的中点 求证 bf ed1 证明 如图 取bb1的中点g 连接gc1 ge 因为f为cc1的中点 所以bg c1f 且bg c1f 即四边形bgc1f为平行四边形 所以bf gc1 又eg a1b1 a1b1 c1d1 且eg a1b1 a1b1 c1d1 所以eg c1d1 且eg c1d1 即四边形egc1d1为平行四边形 所以ed1 gc1 所以bf ed1 题型一 题型二 题型三 题型四 反思证明两条直线平行的方法 1 平行线的定义 2 三角形中位线 平行四边形的性质等 3 公理4 题型一 题型二 题型三 题型四 变式训练2 如图所示 p是 abc所在平面外一点 d e分别是 pab和 pbc的重心 求证 de ac 题型一 题型二 题型三 题型四 证明连接pd pe并延长分别交ab bc于点m n 如图所示 因为d e分别是 pab pbc的重心 所以m n分别是ab bc的中点 连接mn 则mn ac 在 pmn中 因为所以de mn 所以de ac 题型一 题型二 题型三 题型四 例3 已知e e1分别是正方体abcd a1b1c1d1的棱ad a1d1的中点 求证 bec b1e1c1 证明 如图 连接ee1 因为e e1分别是ad a1d1的中点 所以ae a1e1 且ae a1e1 即四边形aee1a1是平行四边形 所以aa1 ee1 且aa1 ee1 又aa1 bb1 且aa1 bb1 所以ee1 bb1 且ee1 bb1 即四边形bee1b1是平行四边形 所以be b1e1 同理可证ce c1e1 又 bec与 b1e1c1的两边方向相同 所以 bec b1e1c1 题型一 题型二 题型三 题型四 反思在立体几何中 常利用等角定理来证明两个角相等 此时要注意观察这两个角的方向必须相同 且能证明它们的两边对应平行 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 例4 如图 在空间四边形abcd中 ab cd ab cd e f分别为bc ad的中点 求ef和ab所成的角的大小 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 反思1 求两条异面直线所成的角的一般步骤 1 作 根据所成角的定义 用平移法作出两条异面直线所成的角 2 证 证明作出的角就是要求的角 3 计算 寻找或作出含有此角的三角形 求解计算 4 结论 若求出的角是锐角或直角 则它就是所求异面直线所成的角 若求出的角是钝角 则它的补角就是所求异面直线所成的角 2 过一点作两条异面直线所成的角时 常把这个点取在其中一条直线上的特殊位置 或是图形的特殊点 这样可方便于求这个角的大小 3 三角形的中位线是立体几何中常用到的线段 是解决立体几何问题最重要的辅助线 题型一 题型二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小雪语文考试题目及答案
- 第一次带妹妹400字10篇
- 大型农产品供应链采购合同
- 桃花源记中描写艺术的探究与学习:初三文言文阅读理解教案
- 给灾区小伙伴的一封信一封信作文15篇范文
- 纪检安全知识培训材料课件
- 整治形式主义为基层减负若干规定
- 《荆轲刺秦王改编》满分作文800字(3篇)
- 过年双辽作文600字(10篇)
- 早教环创理论知识培训课件
- 三年级科学教材培训心得
- 北师大版二年级数学上册计算题专项复习大全120
- 北京市海淀区2023-2024年五年级上学期数学期末试卷
- 医疗机构人力资源管理制度
- 品管圈PDCA改善项目-提高住院患者出入量记录的准确率
- 餐厅开荒保洁操作技术方案
- 2024年春季小学三年级英语课件教学方法探索
- 部编人教版小学四年级上册语文词语表注音
- DB52T 1781-2024 介入诊疗医务人员辐射防护规范
- 回收黄金合同协议书(2篇)
- 珠宝鉴定信息咨询服务合同
评论
0/150
提交评论