说明书.doc

凸轮轴机床的工件输送机构的设计【9张CAD图纸+毕业论文】【答辩通过】

收藏

压缩包内文档预览:(预览前20页/共29页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:437641    类型:共享资源    大小:2.44MB    格式:RAR    上传时间:2015-05-31 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
凸轮轴 机床 工件 输送 机构 设计
资源描述:

凸轮轴机床的工件输送机构的设计

摘 要

在现代企业生产过程中,生产线零件的输送是非常重要的工作之一,随着生产自动化的发展,目前,这一工作已由机械手的自动搬运逐渐替代传统的人工完成。机械手的出现在减轻工人劳动强度和难度、提高工作效率和质量、降低生产成本上做出了突出贡献,机械手的发展在企业的发展和创收上起到了举足轻重的作用。机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。工业机械手是近几十年发展起来的一种高科技自动生产设备。本课题设计一种在七工位凸轮轴加工机床上应用的机械手,用于实现工件的输送。明确机械手的功能、技术参数、工作原理、主要结构及特点。要求结构简单、抓取重量大、开合行程长、运行可靠,从而提高生产效率。


关键字:机器人;抓取装置;工业机械手;手爪



CAM shaft of machine tool workpiece conveying mechanism design

Abstract

In the modern enterprise production process, the delivery of parts of the production line is one of the very important work, with the development of production automation, this work by the automatic handling of the robot gradually replace the traditional manual. Reduce labor intensity and difficulty, improve work efficiency and quality, reduce production costs, the emergence of robot made outstanding contributions to the development of the robot has played a pivotal role in the development of enterprises and income-generating. The robot is imitating the action of manpower, the robotic device used to automatically capture, handling or operation to achieve a given program, track and requirements.The industrial robot is a high-tech automated production equipment developed in recent decades. The design of this project an application in the the seven stations camshaft machine tools, robots, used to implement the delivery of the workpiece. Clear function of the robot, the technical parameters, it works, the main structure and characteristics. Requirements of the structure is simple, grab the weight, opening and closing stroke, reliable operation, thereby enhancing production efficiency.


Keywords: robot ;grasping device;industrial manipulator; gripper


目  录

1 绪论1

1.1题目背景1

1.2研究意义1

1.3国内研究的情况1

1.4国外研究情况2

1.5本课题研究的主要内容2

1.5.1凸轮轴机床的工作原理2

1.5.2机械手总体结构的设计3

2 机械手的总体设计5

2.1机械手的设计原则5

2.2机械手的座标型式与自由度6

2.2.1确定大体参数6

2.3机械手的手部结构方案设计6

2.4机械手的手腕结构方案设计7

2.5机械手的手臂结构方案设计7

2.6机械手的控制方案设计7

2.7机械手的主要技术参数7

3 手部结构设计9

3.1夹持式手部结构9

3.1.1手指的形状和分类9

3.1.2设计时考虑的几个问题9

3.1.3手部夹紧液压缸的设计10

4 手腕结构设计14

4.1手腕的自由度14

4.2手腕的驱动力矩的计算14

4.2.1手腕转动时所需的驱动力矩14

4.2.2回转液压缸的驱动力矩计算16

4.2.3手腕回转缸的尺寸及其校核17

5 手臂液压缸的尺寸设计与校核19

5.1手臂伸缩液压缸的尺寸设计与校核19

5.1.1手臂伸缩液压缸的尺寸设计19

5.1.2尺寸校核19

5.1.3导向装置19

5.1.4平衡装置20

5.2手臂升降液压缸的尺寸设计与校核20

5.2.1尺寸设计20

5.2.2尺寸校核20

5.3手臂回转液压缸的尺寸设计与校核21

5.3.1尺寸设计21

5.3.2尺寸校核21

6 机械手的PLC控制系统设计23

6.1可编程序控制器的选择及工作过程23

6.1.1可编程序控制器的选择23

6.1.2可编程序控制器的工作过程23

6.2可编程序控制器的使用步骤24

6.3机械手可编程序控制器控制方案24

6.3.1控制系统的工作原理及控制要求25

结 论26

致 谢27

参考文献28

毕业设计(论文)知识产权声明29

毕业设计(论文)独创性声明30

1.1题目背景

在现代企业生产过程中,生产线零件的输送是非常重要的工作之一,随着生产自动化的发展,目前,这一工作已由机械手的自动搬运逐渐替代传统的人工完成。机械手的出现在减轻工人劳动强度和难度、提高工作效率和质量、降低生产成本上做出了突出贡献,机械手的发展在企业的发展和创收上起到了举足轻重的作用。本课题设计一种在七工位凸轮轴加工机床上应用的机械手,用于实现工件的输送。明确机械手的功能、技术参数、工作原理、主要结构及特点。要求结构简单、抓取重量大、开合行程长、运行可靠,从而提高生产效率。

1.2研究意义

机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。工业机械手是近几十年发展起来的一种高科技自动生产设备[1]。他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛[2]。因此,进行凸轮轴机床的工件输送机械手的研究设计具有重要意义。我感觉设计所需要的知识仅课堂所学的是完全不够的,但正是这样,才更能锻炼自己,才更富有挑战,我想在这次的设计中我一定会尽全力做好的!

1.3国内研究的情况

我国的工业机械手的研究研发开发始于20世纪70年代左右。1972年我国的第一台工业机械手开发制造于上海,随着全国各省都开始研制和研发应用机械手。如今我国正从一个“制造型大国”向“制造型强国”迈进,中国的制造业正在面临着与国际接轨、世界接轨、参与国际分工的巨大工作和挑战当中,这将会给机械手产业发展注入新的动力和活力[3]。随着机械手发展的深度和广度以及机器人智能水平的不断提高,中国的机械手已在众多领域得到了广泛普遍的应用。已经从传统的工业制造领域向非制造领域延伸。如采矿机器人、建筑业机器人以及水电系统用于维护维修的机器人等。在国防军事、医疗卫生、食品加工、生活服务等领域机械手的应用也越来越多。在未来几年,我国将在传感技术、激光技术、工程网络技术中机械手将会被广泛应用,因此这些技术会使机械手的应用更为高效、高质,运行成本将更低[4]。据一系列现象证据表明,今后机械手将在医疗、保健、生物技术和产业、教育、救灾、海洋开发、机器维修、交通运输和农业生产等各领域得到广泛应用。

1.4国外研究情况

   现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化产品[5]。机械手首先是从美国开始研制的,1958年美国联合控制公司研制出第一台机械手。在此基础上美国通过不断改进完善,研制出一系列新的机械手,美国的研制十分注意提高机械手的可靠性,改进其结构,降低其成本。德国从1970年开始在制造行业中应用机械手,主要用于起重运输、焊接和设备的上下料等作业。日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进二种典型的机械手后,便开始大力进行机械手的研究。据报道,1979年从事机械手的研究工作的大专院校、研究单位多达50多个;1976年大学和国家研究部门用在机械手的研究费用42%;1979年日本机械手的产值达443亿日元,产量为14535台。使用机械手最多的行业是汽车工业,其次是电机、电器和电子行业。到目前在日本工作的工业机械手已有100万台左右。第二代机械手设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机能。目前国外已经出现了触觉和视觉机械手。第三代机械手(机械人)则能独立地完成工作过程中的任务。它与电子计算机和电视设备保持联系。并逐步发展成为柔性制造系统FMS(Flexible Manufacturing System)和柔性制造单元(Flexible Manufacturing Cell)中重要一环。随着工业机器手(机械人)研究制造和应用的扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多[6]。

1.5本课题研究的主要内容

1.5.1凸轮轴机床的工作原理

如图1.1所示零件为凸轮轴。凸轮轴是发动机中的重要零件之一,其通常是由具有多段高次曲线型面的非圆轮廓面组成,其升程、转角与砂轮半径之间存在非线性关系,且大部分凸轮轴属细长轴类零件。而凸轮轴加工精度和质量直接影响到发动机的质量、废气排放、使用寿命、节能和效率。图1.2是某型号发动机的凸轮轴示意图,其法兰面上的孔系的加工是在一台卧式单面七工位的机床上完成的,该机床用一个多轴头在5个加工工位上完成了5道加工工序。在加工工位之前有一个零件装卸工位,为了在装卸工位卸下工件,必须解决工件的返回问题。为此,我们设计了机械手在五个加工工位之后的等待工位抓取工件,并实现工件的返回。如图1.3所示为各加工工位布局图,工位Ⅰ是装卸工位,工位Ⅶ是机械手抓取工位,凸轮轴从Ⅰ工位通过步伐式棘爪输送机构依次自动输送至Ⅱ~Ⅶ工位,而机械手用来实现工件由Ⅶ工位返回至Ⅰ工位。


内容简介:
毕业设计(论文)中期报告题目:凸轮轴机床的工件输送机构的设计系 别 机电信息系 专 业 机械设计制造及其自动化 班 级 姓 名 学 号 导 师 2013年 3 月 20 日1.设计(论文)进展状况 本阶段的主要任务是完成了外文文献的翻译工作,对机械手结构设计进行了更深层次的分析和理解,包括机械手结构的设计和结构受力的分析,大概了解了机械手结构在选用过程中所依据的原则。1.1在参考大量文献资料的情况下,证实了开题报告中所提出的的机械手整体结构设计方案可行。原因是其满足了结构简单、抓取量大、开合行程长、运行可靠的原则。1.2机械手主要运动部分由动力型旋转关节和前、后两臂及手爪组成,臂部各相邻部件的相对角位移为运动坐标。动作灵活,所占空间小,工作范围大。1.3机械手整体结构如图1所示。图1 机械手整体结构图1.4设计整体为3个自由度。分别为:(1)手爪相对于小臂的回转;(2)小臂相对于大臂的回转;(3)大臂相对于机架的回转。1.5设计的工作原理如下:机械手在抓取工位等待,控制系统发出指令,使机械手的小臂的升降油缸将手爪下降到取料位置。手指开合的活塞杆下端联接一连杆滑块机构,当活塞上下移动时,连杆滑块机构使两手指合拢。这是,小臂的油缸活塞上升,将工件提升到预订高度后,行程开关发信号,使大臂回转。此后,小臂下降,将工件准确地放到上下料位置,然后手指张开将工件松开。小臂上升,大臂反方向回转复位。1.6手部结构设计根据工件的结构特点,机械手手指采用平移型双手双指式手指来夹持工件的两端,其手指通过连接架与手指开合油缸端部相连接,如图2所示。图2 手部结构图1.7大臂回转机构设计依靠带齿轮的无杆活塞油缸,通过齿轮-齿条机构实现大手臂的回转。如图3所示,调整固定在回转立柱体上的两个可调定位挡块1,可保证大手臂回转定位的准确;调整油缸端盖处的两个死挡铁螺钉3,使它与齿条活塞端部刚刚接触或留有约01mm左右的间隙,以控制大手臂的回转角度,大手臂回转到等待工位和上下料工位的动作信号分别由两个行程开关2发出。在无杆活塞油缸的两端部,均设有节流缓冲装置,以减小机械手在到达始、末两位置时由于惯性所产生的冲击,保证大手臂的定位稳定可靠。图3 大臂回转机构图2.存在问题级解决措施:2.1确定大体参数(1)抓重:15千克(2)自由度数:3个(3)小臂升降范围:0200mm(4)大臂回转范围:090(5)手爪夹持范围:0100mm2.2大臂相对于机架的回转应采取什么方式传动?由于一般的电机驱动系统输出的力矩较小,需要通过传动机构来增加力矩,提高负载能力。对机械手的传动机构的一般要求有:(1)结构紧凑,即具有相同的传动功率和传动比时体积最小,重量最轻。(2)传动刚度大,即由驱动器的输出轴到连杆关节的转轴在相同的扭矩时,角度变形要小,这样可以提高固有频率,并大大减小低频振动。(3)回差要小,即由止转到反转时空行程要小,这样可以得到较高的位置控制精度。(4)寿命长,价格低。为了减小机构运行过程中的冲击和振动,并且不降低控制精度,采用了齿形带传动。齿形带传动是同步带的一种,用来传递平行轴的运动。齿形带的传动比计算公式为:i=N1/N2=Z1/Z22.3不能熟练使用制图软件,致使工作无法正常快速进行。其次,对机械手结构理解的还不是很到位等。通过与同学的探讨及老师的指点,使我对自己的毕业设计有了更深一步的认识。我深深明白了设计与实际要紧密结合,要多动头脑,勤思考,平时还要多练习软件。3.后期工作安排:(1)翻阅资料,查找公式;(2)计算并核算选型;(3)绘制设计相关的零件图和装配图;(4)撰写毕业论文,交给老师审阅;(5)准备答辩。 指导教师签字: 年 月 日注:1)正文:宋体小四号字,行距20磅,单面打印;其他格式要求与毕业论文相同。2)中期报告由各系集中归档保存,不装订入册。4毕业设计(论文)开题报告题目:凸轮轴机床的工件输送机构的设计系 别 机电信息系 专 业 机械设计制造及其自动化 班 级 姓 名 学 号 导 师 2012年 12 月 25 日1.毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况)1.1题目背景在现代企业生产过程中,生产线零件的输送是非常重要的工作之一,随着生产自动化的发展,目前,这一工作已由机械手的自动搬运逐渐替代传统的人工完成。机械手的出现在减轻工人劳动强度和难度、提高工作效率和质量、降低生产成本上做出了突出贡献,机械手的发展在企业的发展和创收上起到了举足轻重的作用。本课题设计一种在七工位凸轮轴加工机床上应用的机械手,用于实现工件的输送。明确机械手的功能、技术参数、工作原理、主要结构及特点。要求结构简单、抓取重量大、开合行程长、运行可靠,从而提高生产效率。 1.2研究意义机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。工业机械手是近几十年发展起来的一种高科技自动生产设备【1】。他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛【2】。因此,进行凸轮轴机床的工件输送机械手的研究设计具有重要意义。我感觉设计所需要的知识仅课堂所学的是完全不够的,但正是这样,才更能锻炼自己,才更富有挑战,我想在这次的设计中我一定会尽全力做好的!1.3国内研究的情况我国的工业机械手的研究研发开发始于20世纪70年代左右。1972年我国的第一台工业机械手开发制造于上海,随着全国各省都开始研制和研发应用机械手。如今我国正从一个“制造型大国”向“制造型强国”迈进,中国的制造业正在面临着与国际接轨、世界接轨、参与国际分工的巨大工作和挑战当中,这将会给机械手产业发展注入新的动力和活力【3】。随着机械手发展的深度和广度以及机器人智能水平的不断提高,中国的机械手已在众多领域得到了广泛普遍的应用。已经从传统的工业制造领域向非制造领域延伸。如采矿机器人、建筑业机器人以及水电系统用于维护维修的机器人等。在国防军事、医疗卫生、食品加工、生活服务等领域机械手的应用也越来越多。在未来几年,我国将在传感技术、激光技术、工程网络技术中机械手将会被广泛应用,因此这些技术会使机械手的应用更为高效、高质,运行成本将更低【4】。据一系列现象证据表明,今后机械手将在医疗、保健、生物技术和产业、教育、救灾、海洋开发、机器维修、交通运输和农业生产等各领域得到广泛应用。1.4国外研究情况 现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化产品5。机械手首先是从美国开始研制的,1958年美国联合控制公司研制出第一台机械手。在此基础上美国通过不断改进完善,研制出一系列新的机械手,美国的研制十分注意提高机械手的可靠性,改进其结构,降低其成本。德国从1970年开始在制造行业中应用机械手,主要用于起重运输、焊接和设备的上下料等作业。日本是工业机械手发展最快、应用最多的国家。自1969年从美国引进二种典型的机械手后,便开始大力进行机械手的研究。据报道,1979年从事机械手的研究工作的大专院校、研究单位多达50多个;1976年大学和国家研究部门用在机械手的研究费用42%;1979年日本机械手的产值达443亿日元,产量为14535台。使用机械手最多的行业是汽车工业,其次是电机、电器和电子行业。到目前在日本工作的工业机械手已有100万台左右。第二代机械手设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机能。目前国外已经出现了触觉和视觉机械手。第三代机械手(机械人)则能独立地完成工作过程中的任务。它与电子计算机和电视设备保持联系。并逐步发展成为柔性制造系统FMS(Flexible Manufacturing System)和柔性制造单元(Flexible Manufacturing Cell)中重要一环。随着工业机器手(机械人)研究制造和应用的扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多6。2.本课题研究的主要内容和拟采用的研究方案、研究方法或措施2.1主要内容2.1.1了解凸轮轴机床工作原理,工业机器人的发展及在工业生产中的应用;2.1.2明确该机械手的规格参数,分析其组成和工作原理;2.1.3完成该机械手的结构设计和主要部件的设计计算;2.1.4应用软件绘制所设计机械手的装配图。2.2研究方案2.2.1凸轮轴机床的工作原理 如图1所示零件为凸轮轴。凸轮轴是发动机中的重要零件之一,其通常是由具有多段高次曲线型面的非圆轮廓面组成,其升程、转角与砂轮半径之间存在非线性关系,且大部分凸轮轴属细长轴类零件。而凸轮轴加工精度和质量直接影响到发动机的质量、废气排放、使用寿命、节能和效率。图2是某型号发动机的凸轮轴示意图,其法兰面上的孔系的加工是在一台卧式单面七工位的机床上完成的,该机床用一个多轴头在5个加工工位上完成了5道加工工序。在加工工位之前有一个零件装卸工位,为了在装卸工位卸下工件,必须解决工件的返回问题。为此,我们设计了机械手在五个加工工位之后的等待工位抓取工件,并实现工件的返回。如图3所示,工位是装卸工位,工位是机械手抓取工位,凸轮轴从工位通过步伐式棘爪输送机构依次自动输送至工位,而机械手用来实现工件由工位返回至工位。 图1 凸轮轴 图2 凸轮轴示意图图3 各工位布局图2.2.2机械手总体结构的设计 如图4所示,机械手装置安装在机床的侧面,机械手大臂的回转运动,靠液压缸2通过齿轮、齿条机构来实现。机械手小臂的升降,由油缸1驱动。手爪4的开合动作由液压缸3驱动的连杆、滑块机构来实现。为了确保机械手大臂回转输送时,随行夹具在此时是平面平行移动,采用了平行四边形机构。机械手的动作顺序是:机械手在等待工位(抓取工件工位)等候机械手小臂下降手爪收拢抓取随行夹具小臂上升大臂回转至装卸料工位小臂下降手爪放松小臂上升大臂回转至等待工位等候。机械手的动作全部采用液压驱动,电气控制。(1)机械手腰座结构的设计(2)机械手手臂结构的设计(3)机械手手腕结构的设计(4)机械手手爪结构的设计 如图5所示,手爪是用来抓取工件的,要求其结构简单,动作灵敏,操作方便。(5)机械手机械传动机构的设计(6)机械手驱动系统的设计 图4 机械手结构图 图5 手爪示意图2.3研究方法2.3.1首先阅读毕业设计题目和任务书,查阅相关文献和资料,做出初步规划设计方案,积极开展调研论证;2.3.2向指导老师咨询有关问题和登陆中国知网查阅资料文献;2.3.3对机械手进行结构分析,画出草图;2.3.4结合自己熟悉的制图软件,对其进行深入的实践;2.3.5完善绘图,请指导老师修改。3.本课题研究的重点及难点,前期已开展工作3.1 研究的重点及难点 机械手结构的设计及其传动机构和驱动系统的设计;机械手零件设计及其装配关系;机械手的技术参数、结构特点和受力分析。 3.2前期已展开的工作3.2.1查找和阅读大量期刊、书籍、报纸及优秀硕士论文分析相关数据;3.2.2初步拟定了整体结构和设计方案;3.2.3学习零件的结构设计的有关知识;3.2.4在学校电子阅览室查找了有关机械手的外文翻译。 4.完成毕业论文的工作步骤与时间安排(按周次填写)(1)13周:调研并收集资料;(2)46周:明确该机械手的规格参数,分析其组成和工作原理;(3)79周:完成该机械手的结构设计计算;(4)1012周:完成该机械手的装配图;(5)1315周:完成论文撰写,准备答辩。5.指导教师意见(对课题的深度、广度及工作量的意见) 指导教师: 年 月 日6.所在系审查意见:系主管领导: 年 月 日 注:1)正文:宋体小四号字,行距20磅,单面打印;其他格式与毕业论文要求相同。2)开题报告由各系集中归档保存。 3)开题报告引用参考文献注释格式可参照附录E“毕业设计(论文)参考文献样式”执行。不进入正文,可以作为附件放在开题报告后面。参考文献1 姚志良. 工业机械手浅谈(二)J. 组合机床与自定化技术. 1977,(03) :6- 92 郭益友. 工业机械手在制造工艺中的发展及应用J. 淮南职业技术学院学报. 2002,(01) :5- 73 国内机械行业. 机械手应用与技术发展概况(上)J. 科技简报. 1975,(07) :9- 114 邹莉. 传感检测技术在机械手中的应用J. 科技信息(学术研究). 2008,(36) :25- 315 吴振彪,王正家. 工业机器人 M. 武汉:华中科技大学出版社. 20066 Tsai LW. Solving the inverse dynamics of a Stewart-Cough manipulator by the principle of virtual work. Journal of Mechanical Design . 2000,(1) :13- 187 陶湘厅,袁锐波,罗璟. 气动机械手的应用现状及发展前景J. 机床与液压. 2007,(08) :35- 418 雷勇涛,李大明. 机械手运动稳定性分析J. 茂名学院学报. 2006,(01) :13- 179 孙恒,陈作模,葛文杰. 机械原理 M. 北京:高等教育出版社. 2006.510 胡玉睿. 机械手原理 M .北京:中央广播电视大学出版社. 200411 陆祥生,杨秀莲. 机械手理论及应用 M .中国铁道出版社.198512 马振福. 液压与气压传动 M. 机械工业出版社. 200413 裴仁清. 机电一体化原理. 上海大学出版社. 199814 工业机械手设计基础编写组. 工业机械手设计基础 M . 天津科学技术出版社. 1980 15 方明伦,应振澍,裴任清. 工业机器人. 北京:机械工程师进修大学. 1989.6 16 张建民. 工业机械人. 北京:北京理工大学出版社. 199217 HILLER Manfred. Simulation Modeling of the Motion Control of a Two Degree of Freedom,Tendon Based,Parallel Manipulator in Operational Space Using MATLAB J. Journal of China University of Mining & Technology. 2007,(02) :45- 5718 Carlos,Acosta Calderon,John Q. Gan. An Analysis of the Inverse Kinematics for a 5-DOF Manipulator J. International Journal of Automation and Computing. 2005,(02) :23- 45设计和开发一个竞争低成本四自由度机器人手臂作者:Ashraf Elfasakhany,Eduardo Yanez,Karen Baylon,Ricardo Salgado接收于2011年10月19日,2011年11月7日修订,2011年11月15日接受文摘:这项工作的主要焦点是设计、开发和实施低成本、强控制、有竞争力的机器人手臂。设计四自由度和才华横溢的机器人手臂尽快实现精确简单的任务,如光材料处理,这将被集成到一个移动平台,作为一个助理工业的劳动力。机器人手臂配备有伺服电机来做手臂之间的联系和执行手臂的动作。伺服电机包括编码器,以至于没有控制器实现。我们控制机器人使用的虚拟仪器,它执行逆运动学计算和串行通信的适当的角度对一个单片机,驱动伺服电机的功能修改位置、速度和加速度。测试和验证的机器人手臂结果显示它正常工作。关键词:机器人手臂,低成本,设计,验证,四自由度,伺服马达,Arduino机器人控制,虚拟仪器机器人控制1.介绍机器人术语实际上是定义为研究、设计和使用机器人系统制造1。机器人通常用于执行不安全的,危险的,高度重复,和不愉快的任务。他们有很多不同的功能,如物料搬运、装配、电弧焊、电阻焊、机床装载和卸载功能、绘画、喷涂等。主要有两种不同的机器人:服务机器人和工业机器人。服务机器人是机器人运行的半或全自主执行服务有用的福祉人类和设备,不包括制造业务2。工业机器人,另一方面,是由ISO正式定义为可编程在三个或三个以上轴的自动控制和多功能的机械手1。工业机器人的目的是实现材料、零件、工具或专门的设备通过变量编程动作来执行各种任务。一个工业机器人系统不但包括工业机器人而且包括任何设备和/或传感器需要机器人来执行其任务以及测序或监控通信接口。2007年世界市场增长了3%,其中大约有114000个新安装的工业机器人。2007年底约有一百万工业机器人在使用中,相比之下,估计有50000服务机器人对工业使用3。由于使用的工业机器人手臂的增加,一个进化的话题开始试图模仿人类的动作在一个细节模式。例如一群学生在韩国做了一个机械手臂的设计创新,考虑到跳舞的手,举重,中国书法写作和颜色分类4。另一组工程师在美国发展八自由度机器人手臂。这个机器人能够掌握很多形状对象从一笔一个球和模拟人类的手5。在太空中,航天飞机远程控制器系统,称为SSRMS或创意,和它的继任者是例子,多自由度机器人手臂,已经被用来执行各种任务,如检查航天飞机的使用的一种专门部署与相机和传感器连接在末端的执行器和卫星部署和从航天飞机的货舱检索策略6。在墨西哥,科学家有望设计和开发许多机器人手臂,墨西哥政府估计,在墨西哥大约有11000个机器人手臂用在不同的工业应用。然而,专家认为,最奢华的机器人手臂不仅是高质量的,而且要准确、可重复性和粗短的成本。大多数机器人设置为一个操作的教和重复技术。在这种模式下,一个训练有素的操作者(程序员)通常使用便携式控制装置(一个示教器)教机器人其任务手动。机器人的速度在这些编程会话是缓慢的。目前的工作是一个两阶段的项目的一部分,这就需要一个移动机器人能够运输工具从库房到工业电解槽。在这个阶段,该项目开展的科技大学,墨西哥蒙特雷,主要关注的是设计,发展和实施一个工业机器人手臂粗短的成本、准确和优越的控制。设计四自由度和才华横溢的机器人手臂尽快实现精确简单的任务,如光材料处理,这将被集成到一个移动平台,作为一个助理工业的劳动力。2.机械设计机械设计的机器人手臂是基于机器人机械手和一个人类的手臂具有相似的功能6 - 8。这样一个机械手的链接进行连接接头允许转动运动和链接的机械手被认为形成一个运动链。业务结束的运动链机械手称为末端执行器或结束臂工具,它类似于人类的手。图1显示了自由体对机械设计的机械臂。如图所示,末端执行器不包括在设计中,因为商用夹具已被使用。这是因为,末端执行器是一种最复杂的系统的部分,反过来, 比建造它更容易经济使用在商业中。图2显示了工作区域的机械手臂。这是典型的工作空间有四自由度(4自由度)机械手臂。机械设计仅限于4自由度主要是因为这样一个设计允许最必要的运动和保持成本和复杂的机器人有竞争力。因此,转动关节活动受到限制,旋转完成约两轴肩和周围只有一个在手肘和手腕,见图1。机械臂关节通常由电机驱动。伺服电机的选择,因为它们包括编码器自动提供反馈到汽车和相应的调整位置。但是,这些汽车的缺点是,旋转范围小于180跨度,大大降低了胳膊达到的区域和可能的位置9。选择伺服电机基于最大扭矩所需的结构和可能的负载。在目前的研究中,这些材料用于结构丙烯酸。 图1:自由体的机器人手臂 图2:工作区域的机械手臂。图3显示了用于负荷计算力线图。进行的计算只对关节最大的负载,因为其他关节会有相同的运动,即电动机可以移动链接没有问题。计算考虑了电动机的重量,约50克,除了电动机的重量在联合B,因为它进行链接英航。图4显示了力图在链接CB,其中包含关节(B和C)具有最高负荷(携带链接DC和ED)和计算进行了如下。值用于计算转矩:Wd = 0.011 kg (重量链接DE)Wc = 0.030 kg (重量链接CD)Wb = 0.030 kg (重量链接CB)L = 1 kg (负载)Cm = Dm= 0.050 kg (电动机重量) LBC = 0.14 m (长度链接BC) LCD = 0.14 m (长度链接CD) LDE = 0.05 m (长度链接DE)执行力的总和在Y轴,使用负载如图4,和解决为CY和CB,见方程(1)-(4)。类似地,执行时刻的总和在C点,方程(5)和B点,方程(6),得到扭矩在C和B,方程(7)、(8),分别为。所选择的伺服电机,根据计算结果,是Hextronik HX12K,扭矩280/盎司。这个电动机是推荐的,因为它比其他任何相同规格电动机更便宜。因为我们需要更多的扭矩在联合B,见方程(8),我们使用两个电动机在B点符合转矩要求;然而,一个电动机对于其他关节是足够的。使用两个电动机联合B是比使用一个560/盎司大的电动机便宜很多。在图5中的其他相关特征的电动机,他们可以在130毫秒内转换60度并拥有47.9克。一旦最初尺寸的机器人手臂和电动机被定义,设计进行使用SolidWorks平台;设计应该仔细考虑亚克力板的厚度和其他每个碎片会被附加到哪里。用来制造机器人的这个亚克力是在1/8的厚度薄钢板中被选中,因为它方便加工且更少的重量与良好的阻力。在设计过程中,我们遇到了一些困难,由于强烈的方式,加入薄丙烯酸部分。这是需要工具来燃烧,并加入丙烯酸,并且不是小组认为,机械交界处的螺钉和螺母的基础上,将远强于其他的替代品,如胶水为例。为了做到这一点,一个小的功能的设计允许紧固螺栓与螺母,而无需拧入薄的丙烯酸层。这个过程的结果是在图6中显示的三维设计。设计结束,每个部分在满量程卡纸印刷,然后我们核实了所有的装配尺寸和接口。反过来,我们建立了第一个原型的机器人手臂。接着,对上述机器人手臂的部分被加工的丙烯酸系片材,使用圆锯和皮肤工具。因为在一个专业的车间进行机器人手臂的部分太小,它不容易实现这样小和精确的切割,对部分详细说明做了专业研讨。在组装机器人部件与电机的过程中,很少有问题弹出。关键点无法抗拒紧固,反过来,可能会出现故障,因此,加强这些点被考虑在内。上述机器人手臂的最终结果在图7中所示。 图3:机械手臂力线图 图4:力图链接CB 图5:伺服电动机3机器人手臂逆运动学为了验证正确的定位的机器人手臂,逆运动学进行计算。这种计算被用于获得通过使用在笛卡尔坐标系统从给定的位置,如在图8中所示的每个电机的角度。每个电机将有一个特定的功能:位于在A的电机中的y轴的最终元件的位置,电动机B和C在x轴和z轴的最终元件的位置。问题是简化使用xz平面,如图9所示。在这下面的已知值定义9: 使用三角关系,如图9所示,电动机角度得到2和1,见方程(9)和(10)。电动机B的是要使用1和电动机C将要使用2。用于电机的角度A的计算,如在方程(11)中看到。这些计算,得到的伺服电机的角度并依次他们采取的行动,以移动整个结构的特定位置。4.末端选择端部执行器可能是系统的最重要和最复杂的部分之一。明智的是,这是很容易使用一个商业和经济建设。端部执行器,主要是根据应用程序和任务,机器人手臂的完成而变化,它可以是气动,电动或液压。由于我们的机器人手臂在电力系统中,我们可以选择的末端执行器的电气基础。此外,我们的系统的主应用程序的处理,因此,我们的最终建议类型的执行器,如在图10中示出的叼纸牙。请注意,端部执行器的控制由一个伺服电机,反过来,总伺服电机用于我们的机器人手臂5移动的结构的电机。5.机器人手臂控制机器人手臂可以自主或手动控制。在手动模式下,一个训练有素的操作者(程序员)通常使用的便携式控制装置(示教)教手动做任务的机器人。在这些编程会话机器人的速度很慢。在当前的工作中,我们封闭了这两种模式。所提出的机器人手臂的控制基本上包括三个层次:一个微控制器,驱动器,和一个基于计算机的用户界面。此系统具有独特的特性,可以在编程和控制方法,它是采用逆运动学的灵活性,除了它也可以被实现在全手动模式。在图11中所示的电子控制设计。采用的微控制器是带有命名为“Arduino的”开发/编程板的Atmega368,如图12所示。是非常类似于C的编程语言,但有助于控制的I / O端口,定时器,串行通信的的几个libraryies。该微控制器的选择,因为它具有低的价格,这是很容易重新编程,编程语言是简单,和中断是可用于这个特定的芯片。使用的驱动程序是一个六声道微型的大师伺服控制器板。它支持三种控制方式:USB直接连接到计算机,TTL串口,用于与嵌入式系统,如Arduino的微控制器,内部脚本的自包含的,无主控制器应用程序。这个控制器中,如在图13中所示,包括一个0.25s分辨率用于位置和内置的速度和加速度控制。6.测试和验证进行测试,以验证的机器人的臂和它的组件。睾丸覆盖的特定元素和整个系统的,如在图17中示出。对于单片机,发生在测试的软件的微控制器通过发送不同的命令和检查的输出连接到伺服电机,打开或关闭根据命令。伺服电机进行测试之后通过不同的直接脉冲发送到每个伺服马达和验证移动到正确的位置的响应。我们使用了一个马克知道在哪里的初始位置,并通过与微控制器发送信号,反过来,它被解释由伺服和编码器所提供的信号相比,导致确定电机的最终位置到所需的位置的转动。在这个测试中,伺服电机是不一致的机器人手臂系统,因为不正确的极化。伺服电机驱动器也使用Labview软件测试将命令发送到微控制器发送特定的命令来驱动一台电机连接改变位置。重要的是要注意到,在项目开始的选择,不同的伺服电机驱动器和微控制器之间的通信相关的几个问题的出现。所以,我们选择的驱动程序,它允许直接从计算机发送的数据到它与只有一个USB线,所以在手动控制的执行的情况下,所以单片机只会被用在案例的实现手动控制。进行其他测试,以验证了整个系统的功能,如在图18中示出。通过引入一个特定的位置在Labview的接口和测量的参考点之间的距离的最后一点,以便核实:从逆到直接运动学正确的转换,在指定的角度之间的关系的旋转而发生这些测试电机。机器人手臂的测试和验证是需要细长的时间,因为需要多次迭代的任务之一。在我们的测试中,出现许多问题:错误的角度的计算,错误校正电机,与物理的角度和位置的测量的问题,以及因过载而预期不会燃烧的伺服电机之一。7.结果和讨论机器人手臂在不同的工作条件下,结果如下:7.1伺服电机运动范围得到的伺服电动机的限制,因为这种类型的电机包含规范,它具有小于180度的跨度。所有电机的实际的范围被认为是在范围125 - 142度,如表1中所示。这清楚地表明,实际操作机器人手臂的从旁观者情况下不同。7.2电流消耗电流消耗取决于负载和机器人臂的运动的类型。在目前的研究中,有4个级别的电流消耗。8.结论本文介绍了机器人的手臂,这有天赋完成简单的任务,如光材料处理的设计,开发和实施。机器人手臂的设计和建造由丙烯酸材料伺服电机,执行武器之间的联系和执行手臂的动作。伺服电机包括编码器,使得没有控制器实施,但是,电动机的旋转范围是小于180的跨度,从而大大减小由臂和可能的位置达到的区域。限于四个自由度的机器人手臂的设计,因为这样的设计使大部分必要的运动和保持竞争力的成本和复杂性的机器人。不包括末端执行器的设计,因为市售夹具使用,因为它是非常容易和经济的使用不是建立一个商业。在设计过程中,我们遇到了一些困难,由于强烈的方式,加入薄丙烯酸部分。用螺钉和螺母的基础上的机械结,并为了实现这一点,一个小的功能被设计允许紧固螺栓与螺母,而无需拧入薄的丙烯酸层。控制的机器人手臂,三种方法实现的:一个微控制器,一个驱动器,和一个基于计算机的用户界面。此系统具有独特的特性,可以在编程和控制方法,它是采用逆运动学的灵活性,除了它也可以被实现在全手动模式。这个机器人手臂是便宜得多的可用机器人手臂与他人的对比,也可以控制它的运动从一台计算机,使用Labview接口。几个进行测试,以验证其中睾丸覆盖的特定元件和整个系统的机器人臂,在不同的操作条件下的结果表明的机器人手臂值得信任。8Modern Mechanical Engineering, 2011, 1, 47-55 doi:10.4236/mme.2011.12007 Published Online November 2011 (http:/www.SciRP.org/journal/mme) Copyright 2011 SciRes. MME Design and Development of a Competitive Low-Cost Robot Arm with Four Degrees of Freedom Ashraf Elfasakhany1,2, Eduardo Yanez2, Karen Baylon2, Ricardo Salgado2 1Department of Mechanical Engineering, Faculty of Engineering, Taif University, Al-Haweiah, Saudi Arabia 2Tecnolgico de Monterrey, Campus Ciudad Jurez, Ciudad Juarez, Mexico E-mail: ashr12000 Received October 19, 2011; revised November 7, 2011; accepted November 15, 2011 Abstract The main focus of this work was to design, develop and implementation of competitively robot arm with en- hanced control and stumpy cost. The robot arm was designed with four degrees of freedom and talented to accomplish accurately simple tasks, such as light material handling, which will be integrated into a mobile platform that serves as an assistant for industrial workforce. The robot arm is equipped with several servo motors which do links between arms and perform arm movements. The servo motors include encoder so that no controller was implemented. To control the robot we used Labview, which performs inverse kinematic calculations and communicates the proper angles serially to a microcontroller that drives the servo motors with the capability of modifying position, speed and acceleration. Testing and validation of the robot arm was carried out and results shows that it work properly. Keywords: Robot Arm, Low-Cost, Design, Validation, Four Degrees of Freedom, Servo Motors, Arduino Robot Control, Labview Robot Control 1. Introduction The term robotics is practically defined as the study, design and use of robot systems for manufacturing 1. Robots are generally used to perform unsafe, hazardous, highly repetitive, and unpleasant tasks. They have many different functions such as material handling, assembly, arc welding, resistance welding, machine tool load and unload functions, painting, spraying, etc. There are mainly two different kinds of robots: a ser- vice robot and an industrial robotic. Service robot is a ro- bot that operates semi or fully autonomously to perform services useful to the well-being of humans and equipment, excluding manufacturing operations 2. Industrial robot, on the other hand, is officially defined by ISO as an auto- matically controlled and multipurpose manipulator pro- grammable in three or more axis 1. Industrial robots are designed to move material, parts, tools, or specialized de- vices through variable programmed motions to perform a variety of tasks. An industrial robot system includes not only industrial robots but also any devices and/or sensors required for the robot to perform its tasks as well as se- quencing or monitoring communication interfaces. In 2007 the world market grew by 3% with approxi- mately 114,000 new installed industrial robots. At the end of 2007 there were around one million industrial ro- bots in use, compared with an estimated 50,000 service robots for industrial use 3. Due to increase using of industrial robot arms, an evo- lution to that topic began trying to imitate human move- ments in a detail mode. For example a group of students in Korea made a design of innovations that robotic arm take account of dancing hand, weight lifting, Chinese cal- ligraphy writing and color classification 4. Another group of engineers at USA develop eight degrees of freedom robot arm. This robot is able to grasp many objects with a lot of shapes from a pen to a ball and simulating also the hand of human being 5. In space, the Space Shuttle Remote Manipulator System, known as SSRMS or Cana- darm, and its successor is example of multi degree of freedom robot arms that have been used to perform a va- riety of tasks such as inspections of the space shuttle using a specially deployed boom with cameras and sen- sors attached at the end effector and satellite deployment and retrieval manoeuvres from the cargo bay of the space shuttle 6. In Mexico, Scientists are on track to design and de- velop many robot arms, and the Mexican government A. ELFASAKHANY ET AL. 48 estimates that in Mexico there are about 11,000 robotic arms used in different industrial applications. However, the experts think that the apogee of the robot arms is not only of higher quality, but also accurately, repeatability, and stumpy cost. Most robots are set up for an operation by the teach- and-repeat technique. In this mode, a trained operator (pro- grammer) typically uses a portable control device (a teach pendant) to teach a robot its task manually. Robot speeds during these programming sessions are slow. The present work is part of a two-phase project, which requires a mobile robot to be able to transport the tools from the storage room to the industrial cell. In this phase in the project, which carried out at Monterrey University of Technology, Mexico, the main focus was to design, development and implementation of an industrial robotic arm with stumpy cost, accurate and superior control. This robot arm was designed with four degrees of freedom and talented to accomplish simple tasks, such as light mate- rial handling, which will be integrated into a mobile plat- form that serves as an assistant for industrial workforce. 2. Mechanical Design The mechanical design of the robot arm is based on a robot manipulator with similar functions to a human arm 6-8. The links of such a manipulator are connected by joints allowing rotational motion and the links of the ma- nipulator is considered to form a kinematic chain. The business end of the kinematic chain of the manipulator is called the end effector or end-of-arm-tooling and it is analogous to the human hand. Figure 1 shows the Free Body Diagram for mechanical design of the robotic arm. As shown, the end effector is not included in the design because a commercially available gripper is used. This is because that the end effector is one of the most complex Figure 1. Free body diagram of the robot arm. parts of the system and, in turn, it is much easier and economical to use a commercial one than build it. Figure 2 shows the work region of the robotic arm. This is the typical workspace of a robot arm with four degree of freedom (4 DOF). The mechanical design was limited to 4 DOF mainly because that such a design al- lows most of the necessary movements and keeps the costs and the complexity of the robot competitively. Ac- cordingly, rotational motion of the joints is restricted where rotation is done around two axis in the shoulder and around only one in the elbow and the wrist, see Figure 1. The robot arm joints are typically actuated by electri- cal motors. The servo motors were chosen, since they in- clude encoders which automatically provide feedback to the motors and adjust the position accordingly. However, the disadvantage of these motors is that rotation range is less than 180 span, which greatly decreases the region reached by the arm and the possible positions 9. The qualifications of servo motors were selected based on the maximum torque required by the structure and possible loads. In the current study, the material used for the struc- ture was acrylic. Figure 3 shows the force diagram used for load calcu- lations. The calculations were carried out only for the joints that have the largest loads, since the other joints would have the same motor, i.e. the motor can move the links without problems. The calculations considered the weight of the motors, about 50 grams, except for the weight of motor at joint B, since it is carried out by link BA. Fig-ure 4 shows the force diagram on link CB, which con-tains the joints (B and C) with the highest load (carry the links DC and ED) and the calculations are carried out as follows. Figure 2. Work region of the robotic arm. Copyright 2011 SciRes. MME 49A. ELFASAKHANY ET AL. Figure 3. Force diagram of robot arm. Figure 4. Force diagram of link CB. The values used for the torque calculations: Wd = 0.011 kg (weight of link DE) Wc = 0.030 kg (weight of link CD) Wb = 0.030 kg (weight of link CB) L = 1 kg (load) Cm = Dm = 0.050 kg (weight of motor) LBC = 0.14 m (length of link BC) LCD = 0.14 m (length of link CD) LDE = 0.05 m (length of link DE) Performing the sum of forces in the Y axis, using the loads as shown in Figure 4, and solving for CY and CB, see Equations (1)-(4). Similarly, performing the sum of moments around point C, Equation (5), and point B, Equa- tion (6), to obtain the torque in C and B, Equations (7) and (8), respectively. gydmcmYFLWDWCC0 (1) 21.141kg 9.8m s11.18 NYC (2) 0ydmcmBBFLWDWCWgC (3) 21.171kg 9.8m s11.4758 NBC (4) 220cCDDEcDCDCDDEmCDcW LLMWLL LLDLM (5) 2202DEBBCCDDEDBCCDCDmBCCDcBCBCmBCBBLML LLLWLLLDLLWLLCLWM (6) 1.968 Nm278.6oz incM (7) 3.554 Nm503.38oz inBM (8) The servo motor that was selected, based on the cal- culations, is the Hextronik HX12K, which has a torque of 280 oz/in. This motor was recommended because it is much cheaper than any other motor with same specifica- tions. Since we need more torque at joint B, see Equation (8), we used two motors at point B to comply with the torque requirements; however, one motor is enough for the other joints. Using two motors at joint B is much cheaper than using one big motor with 560 oz/in. Other relevant characteristics of the motors, which can be shown in Figure 5, are that they can turn 60 degrees in 130 mil-liseconds and they have a weight of 47.9 grams each. Once the initial dimensions for the robot arm and the motor were defined, the design were carried out using the SolidWorks platform; design should carefully take into account the thickness of the acrylic sheet and the way that the pieces would be attached to each other. The acrylic sheet used to make the robot is 1/8 thickness and Figure 5. Servo motor. Copyright 2011 SciRes. MME A. ELFASAKHANY ET AL. 50 that thin sheet was chosen because it easier for machining and less weight with a good resistance. During design, we faced some difficulties due to the way of joining thin acrylic parts strongly. It was needed tools to burn and join the acrylic parts and that werent avail- able and the team considered that a mechanical junction based on screws and nuts would be much strong than other alternatives, such as glue for example. In order to accom- plish this, a small feature was designed which allowed to fasten the bolts with the nuts without having to screw in the thin acrylic layer. The result of this process was the tridimensional design shown in Figure 6. By end of design, each part was printed in full scale in cardboard paper and then we verified all the dimensions and the interfaces of the assembly. In turn, we built the first prototype of the robot arm. Next, parts of the robot arm were machined from the acrylic sheet using a circu- lar saw and Dermal tools. The detailing on the parts was done in a professional workshop since the parts of robot arm were too small and it is not an easy for accomplish- ing such small and accurate cuts. During assembling the robot parts with the motors, few problems pop up. There were critical points that did not resist the fastening and, in turn, may break down; hence, reinforcements in these points were considered. The final result of the robot arm is shown in Figure 7. 3. Robot Arm Inverse Kinematics To validate the right positioning of the robotic arm, in- verse kinematics calculations are carried out. Such cal- culations are used to obtain the angle of each motor from Figure 6. Robot arm 3D model. Figure 7. Robot arm complete assembly. a position given by using the Cartesian coordinate sys- tem, as shown in Figure 8. Each motor will have a spe- cific function: the motor located in the A union positions the final element in the y axis, the motors B and C posi- tions the final element in the x and z axis. The problem was simplified by using the xz plane, as shown in Figure 9. In which the following known values were defined 9: LAB: the forearm length. LBC: the arm length. z: the position in the z axis. x: the position in the x axis. y: the position in the y axis. Using trigonometry relations, as shown in Figure 9, the motor angles 2 and 1 are obtained, as seen in Equa- tions (9) and (10). 2222180arcCos2LABLBCxzLABLBC2 (9) 222122arcTanarcCos2zLABLBCxxLABxz2z(10) 0arcTanyx (11) The motor B is going to use 1 and the motor C is go- ing to use 2. The angle for the motor A is calculated as Copyright 2011 SciRes. MME 51A. ELFASAKHANY ET AL. Figure 8. Coordinate system. Figure 9. xz Plane. seen in Equation (11). With these calculations, the angles of servomotors are obtained and in turn they take the ac- tion to move the whole structure to the specific position. 4. End-Effector Selection The end effector is probably one of the most important and most complex parts of the system. Wisely, it is much ea- sier and economical to use a commercial one than build it. The end effector varies mainly according to the appli- cation and the task that the robot arm accomplishes for; it can be pneumatic, electric or hydraulic. Since our robot arm is based in an electric system, we may choose electric ba- sis of end effector. Besides, the main application of our system is handling, accordingly, the recommended type of our end effector is a gripper, as shown in Figure 10. Please note that the end effector is controlled by a servo motor and, in turn, the total servo motors used for our robot arm will be 5 motors that move the structure. Figure 10. Gripper with servo. 5. Robot Arm Control The robot arms can be autonomous or controlled manually. In manual mode, a trained operator (programmer) typi- cally uses a portable control device (a teach pendant) to teach a robot to do its task manually. Robot speeds during these programming sessions are slow. In the current work we enclosed the both modes. The control for the presented robot arm consists basi- cally of three levels: a microcontroller, a driver, and a com- puter-based user interface. This system has unique char- acteristics that allow flexibility in programming and con- trolling method, which was implemented using inverse kinematics; besides it could also be implemented in a full manual mode. The electronic design of control is shown in Figure 11. The microcontroller used is an Atmega 368 which comes with a development/programming board named “Arduino”, as shown in Figure 12. The programming language is very similar to C but includes several library- ies that help in the control of the I/O ports, timers, and serial communication. This microcontroller was chosen because it has a low price, it is very easy to reprogram, the programming language is simple, and interrupts are available for this particular chip. The driver used is a six-channel Micro Maestro servo controller board. It supports three control methods: USB for direct connection to a computer, TTL serial for use with embedded systems, such as the Arduino microcon- troller, and internal scripting for self-contained and host controller-free applications. This controller, as shown in Figure 13, includes a 0.25 s resolution for position and built-in speed and acceleration control. Copyright 2011 SciRes. MME A. ELFASAKHANY ET AL. 52 Figure 11. Electronic scheme of control. Figure 12. Arduino microcontroller board. Figure 13. Servo controller driver. The user interface depends on the control method used, i.e., inverse kinematics or a full manual mode. In the fol- lowing, each interface is described: 5.1. Inverse Kinematics Control In this control method, the user inputs the coordinate sys- tem position where the gripper should be. As consequence, interface is generated with Labview through a visual user, as shown in Figure 14. The program automatically per- forms the inverse kinematics calculations to obtain the angles that each motor should have and then sends a command either to the microcontroller or directly to the driver that will move the robot to the specified position. Communication is performed with the RS-232 protocol. In the following, you may see the Labview user interface inputs and output. The Labview user interface inputs are: x axis position. y axis position. z axis position. Gripper opening. Gripper attack angle. Serial port. The Labview user interface outputs are: Motor A angle. Motor B1 angle. Motor B2 angle. Motor C angle. Attack angle. Gripper angle. Such output variables are treated and sent by an appro- priate way, so that information can be interpreted in a correct manner. The outputs are sent via the serial port which is communicated with the controller. When the but- ton “Move” is clicked, a process will take place, as shown in Figure 15. With this action, the robotic arm will change its position according to the input values. In addition, it has a standby button that stops the communication controller. Figure 14. Labview user interface. Copyright 2011 SciRes. MME 53A. ELFASAKHANY ET AL. Figure 15. Program process. The main advantages of this approach are that it uses an efficient way of moving and offers further capabilities that could be implemented, such as position and sequence learning. A disadvantage, on the other hand, is that the possible positions that have valid angles after the inverse kinematics calculations are very limited because the servo motors have a restraint of 180. 5.2. Manual Control This type of control is an extra option for our system that useful in specific positions. In case of mandatory posi- tions that the inverse kinematics mode cannot calculate their valid angles, we may use the manual control instead. Basically, manual control consists of a series of analog inputs, such as potentiometers, that are connected with the microcontroller which will interpret the values and send a command to the servo driver. In order to imple- ment this, a control board, as shown in Figure 16, should be built to work as an interface with the user. Possible implementation includes a teaching feature where the mi- crocontroller stores positions in memory and by a keypad or a series of switches we may recall these positions. 6. Testing and Validation Several tests were carried out to validate the robot arm and its components. The testes covered both the particular ele- ments and the overall system, as shown in Figure 17. For the microcontroller, the tests are occurred by sending different commands by the software to the microcontrol- ler and check changes on the output which was connected to a servo motor that turned on or off depending on the command. The servo motors were tested afterwards by sending different direct pulses to each servomotor and verifying the response of moving to the right position. We used a mark to know where the initial position was and the final Figure 16. Potentiometer board. Figure 17. Robot arm tests. position of the motors is determined by sending a signal with the microcontroller and, in turn, it is interpreted by the servo and compared to the signal provided by the encoder, resulting in the rotation to the desired position. During this test, the servo motor was inconsistence with the robot arm system because of an incorrect polarization. The servo motor driver was also tested using the Lab- view software to send commands to the microcontroller which sent the specific commands to the driver which had one motor connected to change the position accord- ing to the commend. It is important to notice that at the beginning of the project a different servo motor driver was selected but several problems related to the commu- nication between them and the microcontroller were pre- sent. So we choose a driver that allows the data to be sent directly from the computer to it with only a USB wire, so the microcontroller would only be used in case of the implementation of manual control. Other tests were performed to verify the functionality of the whole system, as shown in Figure 18. Those tests Copyright 2011 SciRes. MME A. ELFASAKHANY ET AL. 54 Figure 18. Robot arm in action. were occurred by introducing a specific position in the Labview interface and measuring the distance between a reference point and the final point in order to verify: the correct transformation from inverse to direct kinematics, the relationship between the specified angles and the ro- tation of the motors. Testing and validation of the robot arm is one of the tasks that require elongated time because several iterations are needed. During our tests, many problems arise as: wrong angle calculations, wrong calibration of the mo- tors, problems with the physical angle and position mea- surements, and one of the servo motors burned because of an overload that wasnt expected. 7. Results and Discussions Results from the robot arm at different operating condi- tions are presented as follows: 7.1. Servo Motors Movement Range The limits of the servo motors were obtained since speci- fication of this type of motors contains that it has less than a 180 degree span. The real range for all motors was found to be in the range 125 - 142 degrees, as shown in Table 1. This clearly demonstrated that real operation of robot arm is different from the stander case. Table 1. Motor angle ranges. Motor Angle Range Motor A 130 Motor B1 135 Motor B2 140 Motor C 142 Motor Attack Angle 125 7.2. Current Consumption The current consumption depends on the load and the type of motion of the robotic arm. In the current study, there are 4 levels of current consumptions: Low (from 0 to 200 mA). This consumption takes place when the robot is at rest (not motion case). Normal (from 200 to 500 mA). This happened when the robot arm is moving with capability to go to the tar- get without needs of great torque. High (from 500 mA to 900 mA). This range is rea- ched at the beginning of carrying loads. By overcoming the initial moment of inertia for loads, the normal range takes a place. Over current (more than 900 mA). The load is too hea- vy and the motor cannot move at all. For being under this condition for more than one minute, the motor will burn, i.e. it is not possible to be used any more. 7.3. Maximum Load These results were obtained using different weights; a bag of corn was used with a scale to determine bag weight. Results carried out by using the robot arm to pick up the bag and move it to specific positions. Table 2 presents the current consumption at different weights of bag of corn. From Table 2, it can be seen that the robot can move without problems at loads lower than 50 grams. At loads 60 grams, the robot arm start having difficulties and after passing 80 grams severe condition occurred where ire- versible damage could be happened in motors. 7.4. Final Position Results show the precision of the robot arm to move dif-ferent weight (50 grams) is presented in Table 3. As shown, the robot arm is able to perform the movement to the position specified. However, this movement is not smooth and som
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:凸轮轴机床的工件输送机构的设计【9张CAD图纸+毕业论文】【答辩通过】
链接地址:https://www.renrendoc.com/p-437641.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!