Simulink下的频谱分析方法及matlab的FFT编程.doc_第1页
Simulink下的频谱分析方法及matlab的FFT编程.doc_第2页
Simulink下的频谱分析方法及matlab的FFT编程.doc_第3页
Simulink下的频谱分析方法及matlab的FFT编程.doc_第4页
Simulink下的频谱分析方法及matlab的FFT编程.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Simulink下的频谱分析方法实现功能: 信号发生器一个信号输入,实时显示其频谱分析 调用模块: 信号源(Signal Processing Blockset - Signal Processing Sources - Sine Wave) Tip 1:不能用连续的信号源 频谱观察窗(Signal Processing Blockset - Signal Processing Sources - Spectrum Scope) Tip 2: 不能用普通的观察窗 Tip 3:必须构上设置中的Buffer input. Buffer size 越大越精细。 Tip 4: 剩下的tips读帮助。 连接关系: 如下图所示 原理框图实验结果: 输出示意图 实现功能: 从Workspace读取一组数,进行频谱分析 调用模块: From Workspace Tip 1: 采样时间不能用0,即必须使用离散模式 Tip 2: 从其他模型中Scope保存出来的“Structure with time”的数据可以直接用 频谱观察窗(同上一功能) 实现功能: 从dSPACE读取一组数,进行频谱分析 实现方法: 1. 从dSPACE读数保存成文件,数据导入Workspace(过程略) 2. 采用从其他模型的Scope保存数据为“Structure with time”的方式构建一个结构变量ScopeData1 3. 使用以下代码将dSPACE数据dscapture拷贝到结构变量ScopeData1中 % ScopeData1.time=0:0.0001:1.9156; %纯粹为占位,19157为dSPACE保存数据长度 for i=1:19157 ScopeData1.signals.values(:,:,i)=dscapture.Y.Data(i); end % 4. 采用下图中的模型进行频谱分析 实验结果: 通过以上方法对单轴压电加速度传感器进行灵敏度分析,下图分别为采用dSPACE和直接利用示波器分析的结果对比。 结果分析: 波形吻合,采用dSPACE测试时噪声的分贝减小了25dB。 在310Hz、370Hz和410Hz出现异常尖峰Matlab编程实现FFT实践及频谱分析内容1用Matlab产生正弦波,矩形波,以及白噪声信号,并显示各自时域波形图2进行FFT变换,显示各自频谱图,其中采样率,频率、数据长度自选3做出上述三种信号的均方根图谱,功率图谱,以及对数均方根图谱4用IFFT傅立叶反变换恢复信号,并显示恢复的正弦信号时域波形图源程序%*% FFT实践及频谱分析 %*%*%*1.正弦波*%fs=100;%设定采样频率N=128;n=0:N-1;t=n/fs;f0=10;%设定正弦信号频率%生成正弦信号x=sin(2*pi*f0*t);figure(1);subplot(231);plot(t,x);%作正弦信号的时域波形xlabel(t);ylabel(y);title(正弦信号y=2*pi*10t时域波形);grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)*fs/length(y);%进行对应的频率转换figure(1);subplot(232);plot(f,mag);%做频谱图axis(0,100,0,80);%控制矩阵横轴纵轴范围,axisxmin xmax ymin ymaxxlabel(频率(Hz);ylabel(幅值);title(正弦信号y=2*pi*10t幅频谱图N=128);grid;%求均方根谱sq=abs(y);figure(1);subplot(233);plot(f,sq);xlabel(频率(Hz);ylabel(均方根谱);title(正弦信号y=2*pi*10t均方根谱);grid;%求功率谱power=sq.2;figure(1);subplot(234);plot(f,power);xlabel(频率(Hz);ylabel(功率谱);title(正弦信号y=2*pi*10t功率谱);grid;%求对数谱ln=log(sq);figure(1);subplot(235);plot(f,ln);xlabel(频率(Hz);ylabel(对数谱);title(正弦信号y=2*pi*10t对数谱);grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=0:length(xifft)-1/fs;figure(1);subplot(236);plot(ti,magx);xlabel(t);ylabel(y);title(通过IFFT转换的正弦信号波形);grid;%*2.矩形波*%fs=10;%设定采样频率t=-5:0.1:5;x=rectpuls(t,2);x=x(1:99);figure(2);subplot(231);plot(t(1:99),x);%作矩形波的时域波形xlabel(t);ylabel(y);title(矩形波时域波形);grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)*fs/length(y);%进行对应的频率转换figure(2);subplot(232);plot(f,mag);%做频谱图xlabel(频率(Hz);ylabel(幅值);title(矩形波幅频谱图);grid;%求均方根谱sq=abs(y);figure(2);subplot(233);plot(f,sq);xlabel(频率(Hz);ylabel(均方根谱);title(矩形波均方根谱);grid;%求功率谱power=sq.2;figure(2);subplot(234);plot(f,power);xlabel(频率(Hz);ylabel(功率谱);title(矩形波功率谱);grid;%求对数谱ln=log(sq);figure(2);subplot(235);plot(f,ln);xlabel(频率(Hz);ylabel(对数谱);title(矩形波对数谱);grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=0:length(xifft)-1/fs;figure(2);subplot(236);plot(ti,magx);xlabel(t);ylabel(y);title(通过IFFT转换的矩形波波形);grid;%*3.白噪声*%fs=10;%设定采样频率t=-5:0.1:5;x=zeros(1,100);x(50)=100000;figure(3);subplot(231);plot(t(1:100),x);%作白噪声的时域波形xlabel(t);ylabel(y);title(白噪声时域波形);grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)*fs/length(y);%进行对应的频率转换figure(3);subplot(232);plot(f,mag);%做频谱图xlabel(频率(Hz);ylabel(幅值);title(白噪声幅频谱图);grid;%求均方根谱sq=abs(y);figure(3);subplot(233);plot(f,sq);xlabel(频率(Hz);ylabel(均方根谱);title(白噪声均方根谱);grid;%求功率谱power=sq.2;figure(3);subplot(234);plot(f,power);xlabel(频率(Hz);ylabel(功率谱);title(白噪声功率谱);grid;%求对数谱ln=log(sq);figure(3);subplot(235);plot(f,ln);xlabel(频率(Hz);ylabel(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论