计划周记进度检查表.xls

旋转行波超声电机结构设计【6张CAD图纸+毕业论文】【答辩通过】

收藏

压缩包内文档预览:
预览图 预览图
编号:437686    类型:共享资源    大小:7.77MB    格式:RAR    上传时间:2015-05-31 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
旋转 行波 超声 电机 机电 结构设计
资源描述:

摘要

超声电机是利用压电陶瓷的逆压电效应,激励弹性体产生谐振作用,把电能转换成微米级振幅的振动,再依靠定子和转子之间产生的摩擦耦合将这细微振动扩大为转子及与之相联的轴的旋转运动。与传统电磁电机相比,具有质量小、结构简单、高效率、低噪音、低速大转矩和可以直接驱动负载等特点。在航空航天、精密仪器、生物医学与许多重要领域等具有广阔的应用前景。

适应于工程上对超声电机的需要,本文设计了一种旋转型行波超声电机,主要完成了以下工作:

1.总结分析了国内超声电机技术的现状、发展及所存在的问题;

2.阐释了旋转行波超声电机的运动机理;

3.利用ANSYS软件建立了超声电机定子的数学模型,利用模型对定子的工作模态进行分析并计算,确定超声电机的定子的工作模态;

4.完成了直径超声电机的装配图和零件图的设计;


关键词:超声电机;模态分析;设计


Abstract

Ultrasonic Motor uses the effect of Piezoelectric from Piezoelectric ceramic, and it produce the effect of resonance excitation by the Active Materials. That the electrical energy transform to the micro-deformations. To propel the rotor and the drive shaft connected to it though the amplification of the micro-deformation of the active material that depends on friction at the interface between rotor and stator.The Ultrasonic Motor offer light mass, simply constructions, high torque density at low speed, low noise, efficient and actuate directly to the load. Ultrasonic motor in the aviation and aerospace, precision instruments, bio-medicine and a number of important areas has broad application prospects.

Projects adapted to the needs of the ultrasonic motor, In this paper, the design  a rotary traveling wave type ultrasonic motor, the main completed the following work:

1.Summary analysis of the domestic status of ultrasonic motor technology, development and the problems;

2.To explain the rotary traveling wave ultrasonic motor of the movement mechanism;

3.The use of ANSYS software, the establishment of a ultrasonic motor mathematical model, using the model of the work of the stator modal analysis and calculation to determine a stator ultrasonic motor mode of work;

4.Completed a ultrasonic motor assembly drawings and parts of the design plan;


Key word: Ultrasonic Motor ; Modal Analysis; Design



目录

摘  要III

AbstractIV

目录VII

1 绪论1

1.1 超声电机的定义1

1.2 超声电机的特点1

1.3 超声电机的发展历史2

1.4 超声电机的应用及发展前景4

1.5 本次课题的研究方向及安排4

2 旋转行波超声电机的工作原理5

2.1 引言5

2.2 旋转行波超声电机的机械结构5

2.3 超声电机的工作原理5

2.4 压电陶瓷的工作原理6

2.5 定子行波的产生7

2.6 定子表面质点运动分析8

2.7 本章小结10

3 定子模态分析计算11

3.1 导言11

3.2 固有频率的理论计算11

3.2.1 共振频率计算11

3.2.2 共振振幅的计算13

3.3 定子建模分析14

3.3.1  ANSYS软件简介14

3.3.2 ANSYS定子建模15

3.3.3 定子分析18

3.4 本章小结20

4 结构设计21

4.1 导言21

4.2 设计流程21

4.3 定子机构设计22

4.3.1 定子内外径设计23

4.3.2 模态阶数选择和振动模态设计23

4.3.3 定子厚度24

4.3.4 驱动齿设计24

4.3.5 内支撑板设计24

4.4 转子设计24

4.5摩擦层设计26

4.6 设计结果26

4.7 电机设计结果装配结构27

4.8 本章小结29

5 结论与展望30

5.1 全文主要内容30

5.2 工作展望30

5.3 心得体会30

致  谢31

参考文献32





1 绪论

1.1 超声电机的定义

超声电机又叫做超声马达。超声电机利用压电材料的逆压电效应。实现电能对机械能的转化。相对于传统电机不同,超声电机是利用超声波频率范围内的机械震动作为驱动源的驱动器。超声电机的英文名为Ultrasonic motor。简称为USM。

1.2 超声电机的特点

超声电机是一种新型的电机,它与传统意义上的电机无论是在使用上还是原理上都有很大的不同。超声电机具有以下几个特点

1)超声电机的能量转换方式不同于传统电机。传统的电机,如异步电机等是通过电场的相互作用酱电能转换成机械能,电机的定子和转子并不直接接触,定转子间是有间隙的。通过电源供电产生电能,经过定子和转子上的线圈产生磁场,磁场力作用于转子,产生机械能。可以看出传统电机的机械能主要靠电磁感应作用由电能转化而来。而超声电机不同于传统电机,超声电机的定子和转子是靠摩擦耦合将动力转换成转子或滑块运动,定子和转子是需要直接接触。因为超声电机不靠电磁感应原理来实现能量转换,所以超声电机不需要刺激和绕组。超声电机利用逆压电效应,在定子上粘贴上压电陶瓷元件,同时对压电陶瓷原件上施加交变电压,使定子产生高频机械振动,振动产生的定子和转子间的摩擦力使转子做定向的回转或直线运动。所以超声电机存在两种能量转换1.压电陶瓷利用逆压电效应实现电能对机械能的转换。2.定转子之间摩擦产生的机械能转换[1]。

2)超声电机具有转速低转矩大的特点。图1.1和图1.2分别为电磁电机和超声电机的转矩/效率-速度曲线图。由图可见,超声电机在小转矩,大转速的情况下效率高。而在低速大转矩的情况下效率则比较低下。


            图1.1图1.2

3)超声电机具有体积较小,重量轻。超声电机依靠定子和转子的摩擦耦合获得机械能,不需要线圈和磁铁,因此相较于普通电机超声电机在相同转矩情况下拥有较小的体积和更轻的重量。

4)无电磁干扰和电磁噪声,电磁兼容性好。因为超声电机没有磁极,所以不收外界电磁的影响,自身也没有电磁感应的影响。因此超声电机适合在强磁场的环境下工作。

1)超声电机具有耐低温的特性,适合在真空的环境下运行,如在太空中。超声电机的定转子具有直接物理接触。当断电后,在静摩擦力的作用下仍能保持很大力矩。

2)结构简单,设计形式自由度大,可以根据需要改动电机的设计

虽然超声电机在半个世纪来的发展下已经具有很有传统电机不具有的很多优良的性能,但是一些不足之处仍然存在

3)超声电机使用寿命短

4)成本高昂

在高温环境下或者在长时间工作使超声电机自身温度上升之后,压电陶瓷在高温下物理特性会发生变化,影响电机的参数,导致电机性能的变化。

综上所述,超声电机在有些地方还是有许多不足的地方,但是,不可否认的是超声电机具有它独有的优越性能。而随着科技的发展,超声电机的部分缺点也在慢慢的被克服。因此在本次的设计中,应该做到取长补短,尽可能的把超声电机的优点发挥到最大,同时把超声电机缺点影响降至最小[2-4]。

1.3 超声电机的发展历史

超声电机的制作设计到许多领域的科学成果,包括机械,声学,摩擦,振动,等很多方面的学科及领域。超声电机的出现以及发展取决于很多方面的突破,如压电陶瓷材料的发现及改进。大致来说,超声电机的发展可以分为三个阶段,即超声电机概念阶段、具有实用前景的样机阶段和产业化生产及应用阶段。

1880年,居里夫妇发现压电效应,但是受当时的科学水平所限,对于压电效应的应用仅仅处于一个很狭小的领域,只局限于水声和电声器件。20世纪40年代初,美苏科学家同时发现了BaTiO3陶瓷的铁电性,这对压电陶瓷的发展产生。 重要的意义。1942年,美国学者Williams和W.Brown申请了第一个超声电机的模型专利。如图为第一个超声电机的模型,四片压电陶瓷分为两组粘贴在截面为正方形的长条弹性体的两个侧面上,对其施加两相相位差为90º的交变电压激励,能够在长条弹性体中激励起两个方面和频率相同的弯曲震动,从而在弹性体端部质点做椭圆摇摆运动,此椭圆摇摆运动就可以驱动压在其上的转子或者移动体。此模型类似于如今的杆式超声电机。但是因为当时的技术水平已经材料方面的问题所制约,这个模型最终没能变成一个真正的样机。


图1.3 最早的超声电机设想模型

在此之后,压电陶瓷的技术革新在不断的进行。1942年S.Robert 发现在BaTiO3陶瓷上施加直流偏压,该陶瓷会呈现强的压电效应。1954年贾非等发现PZT有良好的压电节点性能。这些压电材料的丰富和进步,以及科技水平的发展,超声电机的研究在这样的环境下得到了很快的进步和提升。1961年,日本Bulova钟表公司研制出一种新型钟表,该钟表利用音叉的往复位移拨动棘轮而获得驱动。该钟表的精确度相当高,仅有1min的月误差。这种领先于当时科技水平的钟表,造就了超声电机的样机雏形。1963年,苏联科学家设计出了一台利用轴向弯曲耦合振动的振动片型超声电机,并且由此总结解释出了超声电机的工作原理。1972年前后,德国西门子和日本松下两家公司研究出了利用电谐振工作的直线驱动机械,这种机械拥有高达输完赫兹的振频,但是却因为振幅过小,无法发挥较大的实用价值。1987年,前苏联科学家研究出一种能驱动较大负载的超声电机。这种电机是利用振动片的纵向振动和弯曲振动,再通过摩擦耦合,把机械能传递给转子。

1980年,日本科学家指田年生在苏联科学家的研究基础上,成功制造出一种驻波型超声电机。这种电机的工作频率为27.8KHz,电压300V,输入功率90W,输出功率50W,转速2000r/min,机械效率为55%。这是世界上第一台能应用于实际中的超声电机。但是这部电机在使用过程中磨损十分严重,严重影响电机的使用寿命。1982年,指田年生发明了行波型超声电机,该电机此电机实现了断续点接触变换成多点连续不间断接触推动转子运动,大大的降低了电机的磨损,延长了电机的寿命。1985年,指田年生在美国申请了其专利,并且阐述分析了其工作原理以及超声电机的结构。1987年,松下公司在指田年生的设计基础上对超声电机的定子做出了改进。扩大的定子的振幅,大大的提高了超声电机的效率。在此之后,世界各国也发现了超声电机的研究价值,如美国,英国,土耳其等国家也相继开始加入了对超声电机的研究。时至今日,超声电机的研究仍在继续。

我国对于超声电机的研究开始于上世纪90年代,相较于其他一些发达国家起步较晚,所以对于超声电机的研究与其他国家仍然具有一定的差距,所以,我国需要在超声电机方面获得更大的成就,需要与其他国家相互学习印证,完善我国在超声电机领域的知识,争取缩小与其他国家的差距[5]。


内容简介:
编号无锡太湖学院毕业设计(论文)相关资料题目: 旋转行波超声电机结构设计 信机 系 机械工程及自动化专业学 号: 0923206学生姓名: 董 骋 指导教师: 宋广雷 (职称:副教授 ) (职称: )2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: 旋转行波超声电机结构设计 信机 系 机械工程及自动化 专业学 号: 0923206 学生姓名: 董 骋 指导教师: 宋广雷 (职称:副教授 ) (职称: )2012年11月14日 课题来源课题来自实习单位生产任务所得。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义超声电机被研究问世以来始终在不同的进步和发展。目前超声电机已经被广泛运用于很多方面,超声电机体积小重量轻,无磁场干扰等优点在航天航空,计算机,汽车,精密仪器等方面取得了良好的应用。如航空航天的应用,因为超声电机具有真空工作的良好性能,并且适合于精密仪器,所以美国早在太空机器人的微型仪器机械臂和微型桅杆式机械臂上等部位应用了超声电机。在我们生活中,如医院,影院等地方对噪声要求低,所以窗帘的驱动元件往往应用了超声电机。由此可见,超声电机应用于生活中各个方面。 超声电机的发展前景一样十分广阔,在我国,超声电机在未来同样可以应用在很多方面:1) 航空航天领域。我国在航空航天领域一向走在世界的前端。载人航天技术也仅次于美国与俄罗斯位列世界第三。在未来的航空航天领域中,超声电机相对于传统电机体积小重量轻以及真空环境下的良好性能将会作为航天领域电机的主要选择。对于减少飞船的质量,增加可控性等方面都能有良好的改善2) 车辆上的应用。在未来的车辆发展中,一些大型的或豪华的汽车中往往会需要多达数十个电机,此时减少电机的体积和质量将变得十分必要。超声电机具有这方面的优势。所以,未来的汽车行业,超声电机在这方面的应用将会大有作为3) 磁悬浮列车的应用。磁悬浮列车上具有很强的磁场,传统电机在强磁场干扰下极易失效,这时超声电机的优越性能将完全取代传统的电磁电机。由于超声电机良好的性能,他没有电磁绕组和此路,抛弃了传统电机的电磁感应产生能量,改用压电陶瓷的逆压电效应,使得其具有精度高,体积小,不受磁场影响等特点。这给了超声电机的发展一个良好的基础,过去的短短30年间,从超声电机开始工程实用化以来,超声电机已经在很多方面发挥着其作用,而未来的研究发展中,解决了超声电机目前所存在的缺点后,超声电机将有可能取代部分电磁电机。因此深入研究超声电机不仅具有重要的理论价值,同样具有重要的实际意义。研究内容 熟悉超声电机的历史及发展历程,对超声电机的适用领域及特点性能有全面的了解; 充分解析超声电机的工作原理以及各部件的作用; 掌握ANSYS有限元分析软件对超声电机的可行性进行分析,确定超声电机的可行性; 对超声电机的可行性进行分析,得到超声电机的可行性理论值,与ANSYS 分析得到的结果进行对比,确定超声电机的可行性模态; 对超声电机的各部件尺寸进行设计,并且绘制出各零件的零件图以及装配图;拟采取的研究方法、技术路线、实验方案及可行性分析(1)实验方案将定子进行三维建模,得到三维模型,进行有限元分析,在模态分析软件下验证定子的振动变化,确定能够得到符合条件的样机(2)研究方法 使用UG进行三维建模,得到三维模型 使用ANSYS软件进行模态分析,确定定子模态研究计划及预期成果研究计划:2009年10月12日-2009年12月25日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2010年1月11日-2010年3月5日:填写毕业实习报告。2010年3月8日-2010年3月14日:按照要求修改毕业设计开题报告。2010年3月15日-2010年3月21日:学习并翻译一篇与毕业设计相关的英文材料。2010年3月22日-2010年4月11日:ANSYS分析。2010年4月12日-2010年4月25日:得到相应的零件图和装配图。2010年4月26日-2010年5月21日:毕业论文撰写和修改工作。预期成果:通过超声电机中定子与转子设计和其他相关方面的研究,设计出来一台符合要求的超声电机。特色或创新之处超声电机一种具有全新原理和结构的新概念电机能量转换装置超声电机利用压电材料(通常是压电陶瓷)的逆压电效应,借助于定子弹性体的弹性谐振作用把电能转换为微米级幅度的机械振动,再通过定子与转子(或动子)之间的界面接触过程和摩擦作用把定子的微幅振动转换为便于为人们利用的转子(或动子)的宏观转动(或直线运动),并在这个过程中实现电能到机械能的转换。已具备的条件和尚需解决的问题 实验方案思路已经非常明确,已经具备使用ANSYS有限元分析方面的相关技术资料和学习视频 需要对ANSYS进行学习。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日Rotary Ultrasonic Motors Actuated By Traveling Flexural WavesShyh-Shiuh Lih, Yoseph Bar-Cohen,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 andWillem Grandia, Quality Material Inspection (QMI), Costa Mesa, CA 926271.ABSTRACT Ultrasonic rotary motors are being developed as actuators for miniature spacecraft instruments and subsystems. The technology that has emerged in commercial products requires rigorous analytical tools for effective design of such motors. An analytical model was developed to examine the excitation of flexural plate wave traveling in a rotary piezoelectrically actuated motor. The model uses annular finite elements that are applied to predict the excitation frequency and modal response of the annular stator. This model allows to design efficient ultrasonic motors (USMs) and it incorporates the details of the stator which include the teeth, piezoelectric crystals, stator geometry, etc. The theoretical predictions and the experimental corroboration showed a remarkable agreement. Parallel to this effort, USMs are made and incorporated into a robotic arm and their capability to operate at the environment of Mars is being studied. Key Words: Actuators, Active Materials, Piezoelectric Motors, Ultrasonic Motors (USMs), Stators and Rotors, Modal Analysis.2. INTRODUCTIONThe recent NASA efforts to reduce the size and mass of future spacecraft are straining the specifications of actuation and articulation mechanisms that drive planetary instruments. The miniaturization of conventional electromagnetic motors is limited by manufacturing constrains. Generally, these type of motors compromise speed for torque using speed reducing gears. The use of gear adds mass, volume and complexity as well as reduces the system reliability due the increase in the number of the system components. The recent introduction of rotary piezoelectric motors is offering potential drive mechanisms for miniature instruments 1-5. These motors offer high torque density at low speed, high holding torque, simple construction, can be made in annular shape (for optical application, electronic packaging and wiring through the center), and have a quick response. A study is underway to develop such motors for operation at space environment, namely, operate effectively and reliably at temperatures down to cryogenic levels and vacuum.Ultrasonic motors 5 can be classified by their mode of operation (static or resonant), type of motion (rotary or linear) and shape of implementation (beam, rod, disk, etc.). Despite the distinctions, the fundamental principles of solid-state actuation tie them together: microscopic material deformations (usually associated with piezoelectric materials) are amplified through either quasi-static mechanical or dynamic/resonant means. Several of the motor classes have seen commercial application in areas needing compact, efficient, and intermittent motion. Such applications include: camera auto focus lenses, watch motors and compact paper handling. To obtain the levels of torque-speed characteristics of USMs using conventional motors requires adding a gear system to reduce the speed, thus increasing the size, mass and complexity of the drive mechanism. USMs are fundamentally designed to have a high holding force, providing effectively zero backlash. Further, since these motors are driven by friction the torque that would cause them to be backdriven at zero power is significantly higher than the stall torque. The number of components needed to construct the motor is small minimizing the number of potential failure points. The general characteristic of USMs makes them attractive for robotic applications where small, intermittent motions are required. In Figure 1 the principle of operation of an ultrasonic motor (flexural traveling wave ring-type motor) is shown as an example. A traveling wave is established over the stator surface, which behaves as an elastic ring, and produces elliptical motion at the interface with the rotor. This elliptical motion of the contact surface propels the rotor and the drive-shaft connected to it. The teeth, which are attached to the stator, are intended to increase the moment arm to amplify the speed. The operation of USM depends on friction at the interface between the moving rotor and stator, which is a key issue in the design of this interface for extended lifetime. Figure 1. Principle of Operation of a Rotary Traveling Wave Motor. 3. PRINCIPLE OF OPERATIONThe general principle of the operation of ultrasonic motors is to generate gross mechanical motion through the amplification and repetition of micro-deformations of active material. The active material induces an orbital motion of the stator at the rotor contact points and frictional interface between the rotor and stator rectifies the micro-motion to produce macro-motion of the stator. This mechanism is illustrated in shown in Figure 1. The active material, which is a piezoelectric material excites a traveling flexural wave within the stator that leads to elliptical motion of the surface particles. Teeth are used to enhance the speed that is associated with the propelling effect of these particles. The rectification of the micro-motion an interface is provided by pressing the rotor on top of the stator and the frictional force between the two causes the rotor to spin. This motion transfer operates as a gear leads to a much lower rotation speed than the wave frequency. A stator substrate is assumed to have a thickness, tS, with a set of piezoelectric crystals that are bonded to the back surface of the stator in a given pattern of poling sequence and location. The thickness of the piezoelectric crystals is tp. The total height, h, is the sum of the thickness of the crystals and the stators (bonding layer is neglected). The overall height of the stator is also allowed to vary with radial position. The outer radius of the disk is b and the inner hole radius is a. To generate traveling wave, the piezoelectric crystals poling direction is structured such that quarter wavelength out-of-phase is formed. This poling pattern is also intended to eliminate extension in the stator and maximize bending. The teeth on the stator are arranged in a ring at the radial position.4. THEORETICAL MODELINGThe equation of motion of the ultrasonic motor can be derived from Hamiltons principle. The analytical model has been derived by many authors (e.g. Hagood and A. McFarland 5, Kagawa et al 6). The generalized equation of motion of the stator can be summarized aswhere M, C, K, P, G, are the mass, damping, stiffness, electromechanical coupling, and capacitance matrices, respectively. The vectors x , j , FN , FT, and Q are the model amplitude, the electric potential vectors the normal external force, the tangential external force and the charge vectors, respectively. The modal amplitude x and other generalized coordinates can be defined through energy methods such as Rayleigh Ritz method 5. However, this method smears the contribution of the teeth and the variation of the stator ring as well as the support disk along the radial direction and may lead to undesirable results. Even though, 3-D finite element method (FEM) was reported 6 to be used to accurately predict the modal frequencies and transient response of the stator, it is computational intensive process. Further, the calculated response modes and associated frequencies that are determined by the 3-D FEM needs to be identified visually to find the designed mode. Due to the disadvantages for the methods mentioned above the modified annual finite element described in 7 is used and it is based on the symmetrical characteristics of the ultrasonic motors. The annular finite element is shown as in Fig. 2, where w1, w2 y 1, and y 2 are the degree of freedoms. The transverse displacement w across each element is assumed to be of the form given by the equation , for R1 R2 where w nm is the radial resonance frequency and the index m, n are mode along the q and r direction, respectively. If we assume that the transverse shear and rotary inertial effects are negligible, the elemental mass, stiffness can be derived using the standard variational methods. Thus, the natural frequency and modal shape can be found by solving the eigenvalue problem.Using consistent mass formulations, the effect of the stator teeth can also be included. Details of the formulation of other generalized coordinates are treated similar to those in 7 and will be presented by the authors in a future publication.5. ANALYSIS OF PIEZOELECTRIC MOTORSThe analysis of the nonlinear, coupled rotor-stator dynamic model discussed above has demonstrated the potential to predicting motor steady state and transient performance as a function of critical design parameters such as interface normal force, tooth height, and stator radial cross section. A finite element algorithm was incorporated into the analysis and a MATLAB code was developed to determine the modal characteristics of the stator. The model accounts for the shape of the stator, the piezoelectric poling pattern, and the teeth parameters. Once the details of the stators are selected the modal response is determined and is presented on the computer monitor, as shown for example in Figure 2, where the mode (m, n) = (4, 0) is presented. An electronic speckle pattern interferometry was used to corroborate the predicted modal response and the agreement seems to be very good as can be seen in Figure 3 on the left. Using MATLAB we developed an animation tool to view the operation of USMs on the computer display. The tool allows to show the rotation of the rotor while a flexural wave is traveling on the stator (Figure 4). Figure 2: An annular finite element.Figure 3: Modal response and resonance frequency (left) and experimental verification (right).Figure 4: Animation tool for viewing the operation of USM. The stator is shown with traveling wave and the rotor is rotating above the stator.Using this analytical model that employs finite element analysis, motors were constructed. The predicted resonance and measured resonance frequency for a 1.71-in diameter steel stator are represented in Table 1. The results that are presented in this table are showing an excellent agreement between the calculated and measured data. To examine the effect of vacuum and low temperatures, a 1.1 inch USM was also tested in a cryo-vac chamber that was constructed using a SATEC system and the torque speed was measured as shown in Figure 7. The motor that was servo-controlled showed a remarkable stable performance down to about -48oC and vacuum at the level of 2x10-2 Torr. This result is very encouraging and more work will be done in the future to determine the requirements for operation of USMs at Mars simulated conditions.TABLE 1. The measured and calculated resonance frequencies of a USMs stator.Figure 7. Measured torque-speed curve for a 1.1-inch diameter USM at -48o C and 2x10-2 Torr.6. CONCLUSIONSA finite element model was developed to analyze the spectral response of ultrasonic motors with various geometrical configurations and construction materials. The modal response and the predicted resonance conditions were corroborated experimentally using spectral measurements and interferometric analysis. Further, user interface interactive tools were developed for a MATLAB platform simplifying the analysis of the modal behavior of USMs and allowing the study of their response to various stator parameters. ACKNOWLEDGMENT The authors would like to thank Nesbitt. W. Hagood IV, Aeronautics and Astronautics, MIT, for his assistance in this study under a TRIWG contract. The results reported in this manuscript were obtained under the Planetary Dexterous Manipulator Task, that is managed by Dr. Paul Schenker and it is a TRIWG task that is funded by a JPL, Caltech, contract with NASA Headquarters, Code S, Mr. David Lavery and Dr. Chuck Weisbin are the Managers of TRIWG.REFERENCES1. M. Hollerbach, I. W. Hunter and J. Ballantyne, A Comparative Analysis of Actuator Technologies for Robotics. In Robotics Review 2, MIT Press, Edited by Khatib, Craig and Lozano-Perez (1991). 2. A. M. Flynn, et al Piezoelectric Micromotors for Microrobots J. of MEMS, Vol. 1, No. 1, (1992), pp. 44-51. 3. E. Inaba, et al, Piezoelectric Ultrasonic Motor, Proceedings of the IEEE Ultrasonics 1987 Symposium, pp. 747-756, (1987). 4. J. Wallashek, Piezoelectric Motors, J. of Intelligent Materials Systems and Structures, Vol. 6, (Jan. 1995), pp. 71-83. 5. N. W. Hagood and A. McFarland, Modeling of a Piezoelectric Rotary Ultrasonic Motor, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 42, No. 2, 1995 pp. 210-224. 6. K. Kagawa, T. Tsuchiya and T. Kataoka, Finite Element Simulation of Dynamic Responses of Piezoelectric Actuators, J. of Sound and Vibrations, Vol. 89 (4), 1996, pp. 519-538. 7. D. G. Gorman, Natural Frequencies of Transverse Vibration of Polar Orthotropic Variable Thickness Annular Plates, J. of Sound and Vibrations旋转型行波超声电机帕萨迪纳,CA91109,加利福尼亚理工学院喷气推进实验室;科斯塔梅萨,CA92627,材料质量检测中心,威廉梅兰迪亚。摘要:旋转型超声波电机逐渐发展为太空飞船的微型驱动器及其子系统。此技术应用于有着严格要求的商业产品中,为了更加有效地设计此类电机而采用分析工具。分析模型用于检测在旋转超声电机中激励产生的弯曲行波。这个有限元分析模型为环形,被用于预测环形定子的振动频率和模态响应。此模型给设计高效率的超声波电机提供依据,定子的设计包括齿槽、压电体、定子的几何外形等方面,定子是由他们有机地组合而成。理论计算值与实验结果的比较表明这将是一个值得世人所关注的课题。与此同时,超声波电机还被用于机械臂,他们是否能够在火星的环境下正常运行的研究还在进行中。关键词:驱动器,弹性体,压电电机,超声波电机,定子与转子,模态分析。2. 绪论当前,美国国家航空和宇宙航行局一直致力于缩小未来太空飞船的体积和减少其质量的研究。为了与这变化想适应,超声波电机逐渐成为机械装置简化的一个重要的手段。传统的微型电磁式电机由于受制造工艺的限制,一般这类电机为了达到速度与扭矩相适应需要使用齿轮减速机构,采用这个将会增加设备的质量、体积和机构的复杂性,同时增加系统的部件也会降低系统的可靠度。现在所介绍的旋转压电电机将是微型设备中的未来潜在驱动装置,这种马达具有低速大转矩,堵转力矩高、结构简单、响应快等特点,可以将外形制成环形(应用于光学,配线通过中心的电子仪表组件)。目前,一个关于超声波电机在宇宙环境中工作情况的课题正在研究中,换句话说,它能够在低温和真空的环境下有效可靠地运行。超声波电机按工作模式划分,可以分为静态和动态两种;按运动方式可以分为旋转式和直线式两种;按执行机构的形状可以分为梁式、杆式和板式等等。尽管它们之间有区别,但是他们的工作原理都是一样,即利用压电效应产生的激励:弹性体(通常与压电陶瓷结合)的细小变形通过精确静态机构或者动态谐振的方法扩大。一些超声波马达已经在一些要求结构紧凑和做间歇运动的领域进行产业化应用。这些应用包括:照相机的镜头自动调焦、手表马达以及结构紧凑的打字机。传统电磁电机为了得到和超声波电机一样转矩速度特性,需要添加齿轮减速机构,因此增加电机的尺寸、质量和传动装置的复杂性。超声波电机有高的自锁力,它能提供精确的零位移。此外,由于这些电机是依靠摩擦力矩驱动的,所以在无外力的作用下产生反驱动,因此让人关注的与其他电机相比更高的堵转扭矩。电机的组成部件的数量少代表了潜在故障点的数目会相应减少。超声波电机的优良特性被人们所看好,将其应用于有着体积小,间歇运动要求的机器人上。图1为超声波电机(环形行波超声波电机)的工作原理。行波形成于由环形弹性体构成的定子的表面上,并在转子的表面产生椭圆运动。 定子表面质点的椭圆运动驱动转子和与之相联的轴旋转。在定子表面添加齿槽结构是用于增大振动幅度,以此提高电机的转速。超声波电机的运转依靠运动的定子和转子之间的接触面产生的摩擦。这也是设计如何延长接触面的使用寿命的关键问题。图1 旋转型行波超声波电机工作原理示意图3. 工作原理超声波电机一般的工作原理是通过扩大和重复振子的细小应变来产生总的机械运动。振子引起与转子相接触的定子接触面上的质点产生一个轨迹运动,和在转子与定子之间的分界面产生的摩擦,以此扩大微小运动来产生定子的大运动。这一结构如图1所示。振子是压电陶瓷受到激励在定子内部产生行波,致使定子上的质点做椭圆运动。在置于定子之上的转子上施加预紧力和旋转的定子和转子之间产生摩擦力,依靠这些扩大接触面上的细微应变。此运动的转换过程与齿轮机构类似,产生与行波频率相比更低的旋转速度。定子的下层的厚度设为,在定子粘有一定厚度的一组压电体,这些压电体按照一定的顺序和位置与定子的后表面结合,压电陶瓷的厚度设为。总厚度为,这是压电陶瓷的厚度与定子的厚度之和(其中粘结层厚度忽略不计)。整体高度可以随着径向位置变化而变化。定子的外半径为,内孔半径为。为了产生行波,由两个相差四分之一的波长信号构成压电陶瓷的极化方向,这样的极化方式也能被用来消除定子的范围和最大挠曲。定子上的齿槽在径向位置上成环形分布。为了在定子内部产生行波,需要同时激励出两个相同的正交振型。在同一模式中,两个极化节粘于定子上,以此构成由压电驱动器,这就是模型。从几何学上分析这个模型,结果表明激励出两个状态分别为和信号,将会产生频率为的行波。同时,通过改变驱动信号的工作状态,行波的方向也会相应地发现变化。4. 理论模型超声波电机的运动方程源于汉密尔顿原理,这个分析模型被许多学者所推导过(比如Hagood、A. McFarland和Kagawa等)。定子的通用运动方程归纳如下:式中,M、C、K、P、G分别为质量矩阵、阻尼矩阵、刚度矩阵、机电耦合矩阵和电容矩阵,矢量x、j、和Q分别是模型的振幅、电势正常外力向量、切向力矢量和电荷矢量。振幅矢量x和其他广义矢量能够通过能量平衡原理定义,如Rayleigh Ritz 原理。但是,这个方法忽略了定子上的齿槽的作用。环形定子也会随着内支撑板径向位置的变化而变化,这可能会导致不合要求的结果出现。即使三维有限元分析方法(FEM)可以精确预测模型的固有频率和定子的瞬态响应特性,但这是一个复杂的计算过程。此外,决定设计模型往往需要通过三维有限元分析软件核实计算响应模型和共振频率。由于此方法的所提及的缺点,需要改进过去所描述的周期性有限元,这也是基于超声波马达的对称特性。环形有限元如图2所示,其中都是自由度。横向移动量穿过每个部分,其表现方程如下:式中,表示径向振动频率,指标m、n分别是沿着q和r方向的模型。当假设横向切力和旋转惯性效应忽略不计,质量和刚度矩阵能按照标准变化理论推导。因此,解决特征值问题可以得到正常频率和模型的外形。用标准的公式表示,其中包括了定子齿槽的作用。其他广义坐标的制定细节也和这些类似确定。这些将会在作者以后的出版物中提及。5. 对压电电机的分析对非线性、定子转子之间的动态联接模型分析时,主要讨论的内容包括预测电机的潜在稳定状态和在临界设计参数的情况下电机的运行瞬态性能,比如接触面上的法向力、齿高、定子的径向切面。有限元的运算法则被融入分析软件中,MATLAB的代码被用于确定定子模型的特征。模型反应出定子的形状、压电陶瓷的极化模式和定子齿的相关参数。一旦选定定子的每个细节,那么模型的响应也确定了。这也可以在电脑中进行实时监测,如图2所示,此
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:旋转行波超声电机结构设计【6张CAD图纸+毕业论文】【答辩通过】
链接地址:https://www.renrendoc.com/p-437686.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!