说明书-液压起重台车设计.doc

液压起重台车设计【8张CAD图纸+毕业论文】【答辩通过】

收藏

压缩包内文档预览:(预览前20页/共44页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:437691    类型:共享资源    大小:2.33MB    格式:RAR    上传时间:2015-05-31 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
液压 起重 台车 设计
资源描述:

摘    要

毕业设计我的课题是液压起重台车设计。

设计该液压起重台车主要是用于及时更换机床工具,其特征是用车轮行驶,可制动,用脚进行液压提升和下降,承重500公斤,工作台高度可从660mm,调节到960mm。在设计过程中,对主要受力零件进行了强度、稳定性的分析及计算,使设计零件达到安全指标。并且对其中受力最大的零件——柱塞杆进行了有限元分析。该液压起重台车比起现代化的电动起重车显得极为落后,但本设计结构设计简单、合理,而且成本低廉、操作方便,是非常实用的一部运输工具。论文最后还对起重台车的工作原理进行了介绍,并附有使用和维护的说明。


关键词:  液压;强度计算;工作原理;液压系统


Abstract

My topic of The graduation project is the hydraulic pressure and hydraulic system design.

Designs this hydraulic pressure to get up the heavy trolley mainly issues in promptly to replace the engine bed tool, its characteristic is with the wheel travel, may apply the brake, carries on the hydraulic pressure promotion and the drop with the foot, the load-bearing 500kilograms, the work table highly may from 660mm, adjust 960mm. In the design process, has carried on the intensity to the main stress components, the stable analysis and the computation, enables the design components to achieve the security target. And has carried on the finite element analysis to stress biggest components - plunger rod. This hydraulic pressure gets up the heavy trolley to compare modernized the electrically operated derrick car to appear extremely falls behind, but this design structural design simple, reasonable,moreover the cost is inexpensive, the ease of operation, is extremely practical transport means. The paper finally also to got up the heavy trolley principle of work to carry on the introduction, and attached the explanation which used and maintains.


Key words: Hydraulic pressure;Strength calculation;Principle of work;             The hydraulic system

目录

摘    要III

AbstractIV

目录V

第一章    绪论1

1.1国际起重市场分析1

1.2起重机发展趋势1

1.2.1发展超大型起重机1

1.2.2迷你起重机大量涌现2

1.2.3伸缩臂结构不断改变3

1.3 液压系统的类型3

1.3.1 液压系统的回路3

第二章 原始数据及设计要求5

2.1设计原始参数5

2.2设计要求5

第三章  强度及稳定性计算7

3.1液压缸的设计7

3.1.1确定液压缸的工作压力7

3.1.2确定液压缸内径7

3.1.3液压缸的壁厚和外径的计算7

3.1.4缸筒变形的计算8

3.2柱塞杆的强度计算8

3.3塞杆稳定性计算10

3.3.1无偏心载荷时的纵向弯曲极限力10

3.3.2承受偏心载荷时的纵向弯曲极限力11

3.3.3 活塞杆最大容许行程的计算12

3.4脚踏泵的一些计算13

3.4.1脚踏泵油箱所有油量的计算13

3.4.2柱塞运动到最高处时,所需踏的次数13

3.4.3小柱塞油泵所能产生的压力P214

3.4.4复位弹簧的一些参数计算15

第四章   工作原理介绍18

4.1液压工作原理图如下:18

4.2 液压传动的工作原理19

4.3高压油管的选择19

4.4低压油管的选择19

4.5低压油管接头的选择19

4.6油箱的选择20

第五章   液压系统的使用和维护22

5.1液压油的选择及使用22

5.2维护注意事项24

5.3液压系统的发热验算24

第六章 UG有限元分析25

6.1  目的25

6.2  三维实体造型25

6.3  有限元分析27

第七章 结论32

致谢33

参考文献34


第一章    绪论

1.1国际起重市场分析

近20年世界工程起重机行业发生了很大变化。打破了原有产品与市场格局,在经济发展及市场激烈竞争冲击下,导致世界市场进一步趋向一体化。目前世界工程起重机年销售额已达75亿美元左右。主要生产国为美国、日本、德国、法国、意大利等,世界顶级公司有10多家,世界市场主要集中在北美、日本和欧洲。

  美国既是生产工程起重机的主要国家,又是最大的世界市场之一。由于日本、德国起重机工业的迅速发展及RT和AT产品的兴起,美国厂商曾在60~70年代世界市场中占有的主导地位受到削弱,从而形成美国、日本和德国三足鼎立之势。近几年美国经济回升,市场活跃,外国厂商纷纷参与竞争。美国制造商的实力也有所增强,特雷克斯起重机公司的崛起即是例证。

近年来,随着工程建设规模的扩大,起重安装工程量越来越大,吊装能力、作业半径和机动性能的更高要求促使起重机发展迅速,具有先进水平的塔式起重机和汽车起重机已成为机械化施工的主力。

相对于其他起重机,液压起重机不仅具有移动方便,操作灵活,易于实现不同位置的吊装等优点,而且对其进行驱动和控制的液压系统易于实现改进设计。随着液压传动技术的不断发展,液压汽车起重机已经成为各起重机生产厂家主要发展对象。


1.2起重机发展趋势


1.2.1发展超大型起重机

由于各重点工程向大型化发展,所需构件和配套设备重量不断增加,对超大型起重设备的需求日趋增长。1992年200t以上伸缩臂式起重机的世界销量为90台,到1997年增至130台。德国厂商在起重机大型化发展进程中处于领先地位。世界市场中150t以上的大吨位起重机多数是由利勃海尔和德马泰克公司提供的。利渤海尔LTM1800型是目前世界最大的AT产品,起重量800t,安装了超起装置后型号变更为LTM11000D型,最大起重量增至1000t。

  德马泰克公司1997年推出的AC650型安装了超起装置后,最大起重量可从650t增至800t。AC650是目前世界上起重吨位最大的整装式伸缩臂起重机,行驶状态不需拆下吊臂分别运输。

  住友建机、多田野和加藤公司曾于1989年相继推出360t汽车起重机。住友建机在90年代开发出80t~250t共4种AT产品。多田野也在90年代相继推出100t~550t共6种特大型AT产品。加藤公司则研制成NK5000型500t汽车起重机。目前日本生产的特大型起重机仅在国内销售。

液压传动的主要缺点是漏油问题难以避免。为了防止漏油问题,元件的制造精度要求比较高。油液粘度和温度的变化会影响机构的工作性能。液压元件的制造和系统的调试需要较高的技术水平。

   从液压传动的优缺点来看,优点大于缺点,根据国际上起重机的发展来看,不论大小吨位都采用液压传动系统。纵观众多用户的反馈意见,液压式汽车起重机深受他们的欢迎和好评。


优点

液压传动的起重机,结构上容易实现标准化,通用化和系列化,便于大批量生产时采用先进的工艺方法和设备。此种起重机作业效率高,辅助时间短,因而提高了起重机总使用期间的利用率,对加速实现四个现代化大有好处。


缺点

液压传动的主要缺点是漏油问题难以避免。为了防止漏油问题,元件的制造精度要求比较高。油液粘度和温度的变化会影响机构的工作性能。液压元件的制造和系统的调试需要较高的技术水平。

从液压传动的优缺点来看,优点大于缺点,根据国际上起重机的发展来看,不论大小吨位都采用液压传动系统。纵观众多用户的反馈意见,液压式汽车起重机深受他们的欢迎和好评。所以液压起重台车决定采用液压传动的形式。



1.2.2迷你起重机大量涌现


起重机向微型化发展,是适应现代建设要求而出现的新趋势。10年前开发的神钢RK70(7t)是世界首台装有下俯式吊臂的“迷你”(Mini) RT产品。目前下俯式吊臂已成为“迷你”起重机的重要标志。这种新概念设计已成功移植到德马泰克AC25(25t)和加藤CR-250(25t)等较大吨位起重机上。                                            

  小松公司曾在90年代初、中期相继推出了装有下俯式吊臂的 LW80(8t)和LW100-1(10t)“迷你”RT产品。该公司还曾于1993年和1997年分别推出了另外两种别具特色的LT300型(4.9t)和LT500型(12t)“迷你”RT。据资料介绍,LT300型与LT500型是世界首批装有全自动水平伸缩副臂的轮式起重机。它们将轮式起重机公路行驶能力与专用伸缩臂架技术融为一体,且具有塔机功能,可越过屋顶或其他障碍物靠近作业面,能替代小型自行架设塔机或大型折叠臂式随车起重机。

1.2.3伸缩臂结构不断改变


利渤海尔LTM1090/2(90t)和LTM1160/2型(160t)AT产品,采用了装有“Telematik”单缸自动伸缩系统的卵圆形截面主臂。这种卵圆形截面主臂在减轻结构重量和提高起重性能方面具有良好效果。目前卵圆形吊臂已列入利勃海尔新产品标准部件,装有世界最长的7节84m卵圆形截面主臂的LTM1500型(500t)AT产品,也采用这种单缸伸缩系统。格鲁夫开发的单缸伸缩系统要早于利勃海尔公司,但格鲁夫早期采用的单缸伸缩系统伸缩速度较慢。此外,德马泰克大吨位起重机主臂也采用卵圆形截面。

  格鲁夫GMK6250(250t)和GMK5180(180t)两种AT产品,采用了装有双销双锁自动伸缩系统的U形截面主臂,伸臂速度较快(平均9m/s左右)。伸缩系统由电子式起重机操作装置控制,可将主臂自动伸至各种选定臂长。据报道,美国谢迪.格鲁夫工厂将采用德国工厂的主臂制造技术,原有梯形主臂将被淘汰,原因是焊接工艺复杂,制造成本高。


1.3 液压系统的类型


1.3.1 液压系统的回路

液压系统要实现其工作目的必须经过动力源——控制机构——机构三个环节。其中动力源主要是液压泵;传输控制装置主要是一些输油管和各种阀的连接机构;执行机构主要是液压马达和液压缸。这三种机构的不同组合就形成了不同功能的液压回路。

泵—马达回路是起重机液压系统的主要回路,按照泵循环方式的不同有开式回路和闭式回路两种。

开式回路中马达的回油直接通回油箱,工作油在油箱中冷却及沉淀过滤后再由液压泵送入系统循环,这样可以防止元件的磨损。但油箱的体积大,空气和油液的接触机会多,容易渗入。


1.3.2起升液压系统

   对起重机来说,起升动作是最频繁的动作。目前最常用的起升液压系统为定量泵、定量或变量马达开式液压系统,然而,现代施工对起升系统提出了新的要求:节能、高效、可靠以及微动性、平稳性好。为了适应这些新的要求,以前的定量泵将逐步被先进可靠的具有负载反馈和压力切断的恒功率变量泵所取代,先前的定量马达或液控变量马达也将被电控变量马达所取代。这种系统将能有效的达到轻载高速、重载低速和节能的效果。



1.3.3 操纵、控制系统

   机械式操纵是汽车起重机最简单、最广泛使用的一种操纵方式,液比例操纵系统在我厂也己广泛使用并相当成熟,操作性能得到了很大的提高;然而,最有发展前途的还是电比例操纵系统,借助于计算机技术和可编程技术,汽车起重机将向智能化发展。

   除此之外,液压系统在以下几方面也体现出明显的发展趋势:


   (1)、采用国际化配套,对系统性要求较高的液压元件如泵、阀、马达等采用国际化配套可提高产品的可靠性,另外,国外使用成熟、量大价廉的元件在国内也广泛使用。

   (2)、采用卡套式接头,由于卡套式接头在控制系统污染、防泄露等方面具有很强的优越性,使用卡套式接头能大大减少故障率和早期反馈率。

   (3)、在系统中设计速度分档,由于不同施工项目的不同要求,对起重机各动作速度的要求也不一样,速度分档技术也应运而生,设计不同的速度档位,以适用不同工况的要求。

   (4)、广泛使用高度集成的、模块化阀组,能简化管路,有效的减少液组,提高效率,节约能量,同时易于维护。

   (5)、向计算机技术领域的纵深渗透,汽车起重机将向无线遥控技术、远程诊断服务技术、黑匣子自我保护技术等方向发展,为了实现整机的功能,液压技术将同计算机技术相互渗透,共同发展。


第二章 原始数据及设计要求

2.1设计原始参数

    1:承重500kg ,即F=500kg

    2:工作行程可从660mm调节到960mm。即300mm

2.2设计要求

   方案一:

    1:用车轮行驶

    2:车轮可制动

    3:用脚进行液压提升和下降


方案二:

   用车轮行驶,和制动都可以不变,只要把先前的脚踏泵改为电动机形式,来实现液压的上升和下降。不过这种方案的缺点就是要求比较高一般不怎么采用。因为设计时也要考虑到该产品的经济性,广泛性多方面的渠道考虑的。然而改为电动的液压千斤顶工作原理一样。

  工作原理及组成部分:

 1. 泵体由电动机,油泵,综合阀,换向阀,油箱,车轮,等组成。

 2. 泵体部分:有电机直接带动偏心轴旋转,使柱塞沿着大油缸做往返运动,使油分别从                高低压进油阀吸入,后从高低压出油阀压出分别进入综合阀的高压油路和低压油路。

 3.  综合阀体:由阀体的安全阀,高压路中的额高压单向阀,低压油路中的低压单向阀,安全阀,减压阀,换向阀组成。

 经分析讨论最后决定采用第一种方案。


内容简介:
无锡太湖学院毕业设计(论文)开题报告题目: 液压起重台车设计 信机 系 机械工程及自动化 专业学 号: 0823108 学生姓名: 陈 晟 指导教师: 林承德 (职称:教授 ) (职称: )2012年11月12日 课题来源来自江苏省无锡探矿机械总厂有限公司,该公司只要从事液压板料折弯机及液压摆式的剪板的开发及制造。而液压起重台车是产品机构的重要组成部分之一。科学依据 液压与气压传动是以液体作为工作介质对能量进行传递和控制的一种,这种传动形式相对机械来说就一门新的技术,它充分的代替了传统机械的劳动力,提高了生产的效益。近多年来,随着电子和计算机技术的迅速发展,液压系统在各个领域和各个部门得到了运用,实现了生产过程的自动化。本机液压系统采用了液压泵的工作原理。和日常生活中的千斤顶有着异曲同工之处。这种系统具有操作方便,稳定性能好,可以对油路实现连续控制等特点,是目前世界上比较先进的技术。采用这种技术设计出来的液压系统操作性能和各机构的控制性能都比较高,不仅各机构的定位准确,劳动生产效率高,安全可靠稳定,而且操作灵活方便,生产成本较低。是提高劳动生产率的重要手段之一。为了使设计出来的起重机具有高的性能,设计时不仅要采用一些国内外的先进技术,也要有自己的创新技术。这样,才能使自己设计出来的产品具有一定的先进性,很高的性价比,才能在市场中具有很强的竞争能力。因此,这一款不仅是实用行很强的起重机而且是可行的。并且在不少的中小型企业中得到广泛的使用。研究内容本课题主要是针对液压起重台车的组成,特点,以及功能实用结合了现在机械发展趋势和运用的现状,设计一款能够适用中小型企业适用的一个液压产品。在设计中,仔细研究设计方案,理清思路,应注意以下几点:1. 查阅有关液压起重机的资料,结合自身特点,进行液压系统分析,2. 对工作机构的液压回路进行设计,理清工作原理。3. 根据本题的液压系统工作参数进行计算,并且对注意的零件进行设计计算及应力分析。4. 最后对产品进行检验,做进一步的优化系统。 拟采取的研究方法、技术路线、实验方案及可行性分析 研究方法:通过从网络,书籍,论文等方面查找有关知识,在脑中构思,和老师交流过后确定的一套系统的设计方案。最后在进行理论计算和分析。 技术路线:1.分析 对要设计的液压起重台车进行分析,搞清楚所设计所需要的零件其 尺寸,确定各零件的形状、结构、尺寸和公差等,掌握机械系统各零 件之间的装配关系以及运动部位的运动机理。2. 计算 根据给出数值,来计算基本要求尺寸和公差等,并得出相应的 结果。3.设计 1.着手于起重台车的总体设计;2.着手于液压系统(包括液压缸)。4.作图 元件设计完毕,根据尺寸进行CAD作图,尺寸精确,布局合理,作 出总装配图及零件图。 总结 :进行总结,检验。可行性分析:在设计中,需要对产品合理装配,进行运动分析,以及静态分 析保证装配时的公差配合要求,液压系统的分析。最后对此产品进行 载荷分析。研究计划及预期成果设计总共用时15周。时间安排如下: 13 周:考察生产现场,收集资料(书籍和案例),并完成系统分析 和计算的大致提纲。 3-5 周:撰写开题报告 514周:完成主要数据的计算和图纸的绘制及写说明书。 15周:整理材料,装订论文。预期成果:方案得到了老师的批准,取得了预期的想法,得到了社会实践的认可。不过仍有一些地方还需要进一步的提高。特色或创新之处1.应用CAD/CAE/CAM技术从根本上改变了传统的产品开发和设计方式,大大提高了产品质量,缩短了产品开发周期,降低了生产成本。该产品具有稳定性能高,操作性能简单,机动性能较强,使用性能广泛。2.利用液压系统的传动和小车的机动性,近一步的改善了千斤顶的工作原理,使其产品得到了充分的认可。已具备的条件和尚需解决的问题已经具备的条件: 掌握了液压系统的基本原理,了解和熟练CAD/CAM/CAE技术的运用。对了现代机械有一定的感性认识。懂得了一些知识是机械原理于实践的结合。尚需解决的问题: 在设计液压泵时油路回路的设计还有就是该产品和电气没有紧密的联系。在用UG三维造型事还有一些问题没得到彻底的处理,在今后工作中仍需学习。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日编号无锡太湖学院毕业设计(论文)相关资料题目: 液压起重台车设计 信机 系 机械工程及自动化专业学 号: 0823108学生姓名: 陈 晟 指导教师: 林承德 (职称:教授 ) 2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无无锡锡太太湖湖学学院院 2013 届届毕毕业业作作业业周周次次进进度度计计划划、检检查查落落实实表表 系别:信机系 班级:机械91 学生姓名:陈晟 课题(设计)名称:液压起重台车设计 开始日期:2012年11月12日周次起止日期工作计划、进度每周主要完成内容存在问题、改进方法指导教师意见并签字备 注1-32012年11月12日-2012年12月2日教师下达毕业设计任务,学生初步阅读资料,完成毕业设计开题报告。按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书对课题理解程度不够,对其难点分析不够4-102012年12月3日-12月20日学习UG软件及液压传动原理,并且去工厂里实习。学习用软件绘制零件图,实习工厂里的装配加工对UG软件知识要进一步提高认识及学习。还要加强一些工作中所需的实践经验。11-122012年12月21日-3月1日去图书馆查阅资料,上网查阅有关方面的资料。开始撰写开题报告,学习液压方面的知识,起重机知识。对液压传动知识方面待提高132013年3月4日-3月8日确定液压起重台车的设计方案,画出实体造型。并且撰写开题报告。完成设计方案,并得到老师认可,开始初步计算主要液压方面的情况。计算方面遇到一点问题,还有就是几种方案的确定。142013年3月11日-3月15日液压系统的设计及主要计算学习液压工作原理,完成液压设计和主要部件的计算。液压的原理有点让人头疼,特别是在和电气联系在一起时有点困难。152013年3月18日-3月22日画液压脚踏泵实体完成液压泵的实体图形,包括装配图及各种液压泵所需的零件画装配图时有点问题,不能很好的配合在一起。里面的公差配合有待修改。162013年3月25日-3月29日完成前轮零件图,装配图完成所要求的零件图和装配图对轮子的灵活性能有待进一步考虑设计172013年4月1日-4月5日完成后轮零件图,装配图完成零件图和装配图在标注时有点问题,有些画不出来,需要老师的辅导182013年4月8日-4月12日其他零件部设计设计零件图,准备制作总装备图细小部位零件错在偏差,进行完善周次起止日期工作计划、进度每周主要完成内容存在问题、改进方法指导教师意见并签字备 注192013年4月15日-4月20日完成其他的主要零件图完成所需要的零件图,开始画总装配图应考虑一些小细节上的零件,把小零件列在一起等待以后的使用。202013年4月22日-4月27日完成所有图纸,并检查,改正完成所有图纸,通过检查改正错误。主要是在标注和剖面时有点问题。212013年4月29日-5月3日开始撰写说明书制做ppt,进行运动分析。222013年5月6日-5月10日修改,整理,查阅毕业论文的检查工作从图书馆查找相关资料,队论文进行完善232013年5月13日-5月17日打印图纸,整理资料,准备答辩 说明: 1、“工作计划、进度”、“指导教师意见并签字”由指导教师填写,“每周主要完成内容”,“存在问题、改进方法”由学生填写。 2、本表由各系妥善归档,保存备查。中文译文随车液压起重机的控制摘 要:本文主要是描述随车液压起重机的控制过程。这篇论文分为五个部分:需求分析,液压系统以及存在的问题的分析,不同结构产生不同问题的分析,基于更加先进复杂电液比例控制阀的新技术的发展趋势的分析。本文的研究工作是和实际的工业相结合的,比纯粹的研究理论更有意义。关键字:随车液压起重机,控制策略,电液比例控制阀1.引言本文主要叙述的是对随车起重机控制系统的改进方法随车汽车起重机可以看成是一种大型柔性控制机械结构 。这种控制系统把操作人员的命令由机械结构变为执行动作。 这样定义这种控制系统是为了避免在设计它事产生模糊的思想这是一种通过人的命令把能量转化成机械动作的控制系统 。本文所写的就是这种控制系统。以这个目标为指导方针来分析怎样设计出新的控制系统。文章分为五个部分:1.分析这种控制系统必须据有易操作性,高强度,高效性,稳定性,安全性。2.分析目前这种操作系统所存在的问题。3.从不同的方面分析这种控制系统:不同的操作方式,不同的控制方法,不同的组织结构。4.介绍一种适合于未来工业的比较经济的新的控制系统。5.分析一种据有高性能,高效率,易控制等的比较好的控制系统。它将成为今后研究的比较经济高效的一种方案。2. 论文部分2.1 对控制系统必备条件的分析在一种新的操作系统开始正式投入工作之前,对这种控制系统据有严格的要求。对控制系统的影响有很多因素。例如:机械结构的可实行性因素,可操作性因素,效率因素,符合工业标准。 工业需求必须放在第一位。这与在控制系统中导管破裂保护和超载保护有同等的地位。其次稳定性要求也很重要;系统不稳定就没法正常工作。一旦稳定性要求得以确定,控制系统性能要求就可以进一步确定。机械结构决定了起重机的可操作性。机械机构是随车起重机中可以往复转动固有频率低的大型柔性结构。 为了防止起重机振动,必须使起重机在固有频率下工作,或者提高起重机的固有频率。如果它的固有频率太低或者太高,操作人员将无法给它进行操作。最后传动效率可以在工业标准,稳定性,执行机构确定的基础上得到最优的方案。2.2 对目前这种控制系统的分析在设计一种新的起重机之前,研究目前起重机存在的问题是很有必要的。当前液压随车起重机主要存在以下三个问题:1.不稳定性2.不经济性3.低效性2.2.1 不稳定性不稳定性是一个严重问题,他可能会损伤操作人员或者会是设备受到毁坏。当一个系统不稳定时通常产生严重振动。为了消除当前系统的不稳定性,设计人员既花费了很多时间来研究又花费了很多财力设计出更加复杂的机构。如图1所示为一种起重机,它适合于在高速下工作。但是为了可以安全的工作必须合理控制其运行速度。要提高它的控制速度又必须增加更加昂贵复杂的机械系统。液压系统的参数,如温度或压力同样影响系统的稳定性。一个参数合理的液压系统比一个设计参数不合理的液压系统稳定,为了使整个系统运行稳定,有时必须降低次要的参数值。2.2.2 不经济性目前的液压系统是纯液压的机械系统,因此如果用户想实现一个功能,他就必须买一个能使现这个功能的液压机械组件。因为大多数用户又不同的使用要求,要求同一个设备可以进行升级。这就意味着这些标准设备可以人为的改造,这就增加了组件升级费用。2.2.3 低效性液体在液压系统的两个液压缸之间流动时效率较低。这是因为大多数液压阀都是用一个阀心来控制两个节流口,由于这个链接不可能使阀芯两侧的压力相等,因此在流出端就产生一个与液流方向相反的背压力,同时也增加了流入端的压力。由激励源产生的这个背压力与阀芯两端的压力差成正比的,给油缸的实际压力没有被有效的作用在油缸上。例如,给液压缸的压力为1000psi/1600psi传到液压缸时就只有0psi/600 psi了。无论如何,这样的话,提供的电量必须高于有效电量,这些额外的电量就被白白的浪费了2.3 控制系统不同的控制方法目前主要用电液比例控制阀来控制液压阀的运动。然而对控制筒有不同的控制方法。电液比例控制阀对阀的关/开,公共汽车系统,电源的智能激励,泵的调节方案控制精度都较高。必须对这种系统的优缺点进行分析,找出合理的方案。2.4 近期方案即使这种十分新的系统最佳外形的布局已经得以证明是可行的,但是起重机制造商和配件商还不能立刻就接受这种技术。这是一个渐进的过程,所以提出了一种临时解决的方案。这种方案是由微型计算机和升缩机构组成。这种离合阀可使这种更加高效稳定的执行控制机构得以实现。微型计算机可以对阀进行柔性控制。可以把这些变量编入软件。这样就消除了制造商许许多多不同的变量问题。起重机制造厂家可以根据产品功能选择不同型号的液压阀。配件商也将不得不生产这种型号的阀,这样不仅降低了制造成本,而且使起重机的性能得到提高。2.5 更高效方案的分析这种分析依赖于不同布局结果,液压泵控制的区域决定将要用的控制方法,再依次对这个区域进行分析。不同的区域将用不同的方法探讨,用不同的刀具位置控制。3. 实验设备 本文的中心是研究发展中的经济型机械控制方案的可实现问题,更多重点是先进的实验结果。实验结果由两种方法获得。第一种是通过研究单自由起重机实验台获得,第二种是通过研究一台由丹麦一家起重机厂送给英国的一所军校的起重机获得。如图1所示图1系统实验台 左:单自由度起重机模型 右:随车起重机实物虽然目前这种升缩分离机构在生产商中没有被普遍接受,但是两分离阀将会被逐渐取代。如图2所示是一种幅度-脉冲变换液压缸,它是通过数字信息处理器/奔腾双信息处理器运行程序来控制液压阀的。由数字信号处理器运行控制代码,奔腾处理器来判断并提供图形用户界面。4. 当前工作4.1 直线轴流控法当今市场常见的直线流控器都需要压力补偿。压力补偿器可以使阀芯突然受压时保持恒定的压力。但是新增加的压力补偿器会使阀的结构比简单的随动阀更加复杂。另一种解决方法是用流控器测量阀的压力降来调整阀芯的位置来实现。这种想法虽然简单,但是由于压力传感器和微控器的费用比较高,想普遍运用于商品上是很难的。然而目前这种利用微控器和压力传感器的思想对于生产商来说是可以接受的。虽然依据方程来看很简单,但是要实现却很难。流控器的位置精度取决于位置传感器的精度压力传感器的精度。噪声会影响位置传感器和压力传感器的稳定性。采用延时控制可以消除影响稳定性的噪声,这样,超过阀的运行范围的特征值用就不能用柏努力方程计算,应用更复杂的方程来计算。图2升缩分离机构4.2 液压缸控制方法根据不同的受力方向和速度方向这种液压缸有四种工作情形。如图3所示:多数是普通的随动液压阀,它这种控制方法已经在文献中可以找到,依靠一般的测量法测液压缸的速度位移相当复杂。它们也需要相当复杂的运算法则来控制。本文主要分析基于简单的PI控制器和没有严格速度位移要求的液压缸的控制方法。这种系统的控制方法比复杂的控制方法简单得多,由于它不需要特殊的传感器而且容易被大多数工程师理解所以比较容易被厂商采用。在设计一种控制方法时另一种特别的控制方法也需要了解,它也是液控中常用的一种方法。移动液压阀要求低泄漏,以前的液压阀大们通常有很大的交迭。然而,使生产商能够接受的这种线轴式液压缸的驱动性能相当慢。这种具有很大交迭的重合以及激发很慢的液压阀很难满足现在的要求。交迭和较慢的驱动使压力控制变得相当困难。图3起重机工作的不同情形新的控制方法可以用一个例子清楚简单的描述出来。从入口端实行流控制,出口端就实现液压力。流控制符合柏努力方程。液压控制过程中PI控制器维持较小的压力来提高效率并且可以防止气穴现象。这些都是为了解决大交迭和较低的驱动所做的工作,压力控制器仅仅能排除控制中的一点问题。这就意味着如果控制人员想提高压力,却不能使液压缸移动,只能够降低控制口的开口量。这样做的作用只能使操作人员想改变活塞的方向时使它准时脱离零位。这种情况下外力方向和活塞运动仍然不能改变,这种方式需要改进。既然这样,需要压力控制器在出口变大时提供与外力方向相反的有用压力,当已知入口端的压力下降的时候,它可以增加与外力相反的压力。这个压力也受PI控制器控制,如图4所示就是是一个这种控制系统的控制模型结构。图4减压控制器在写本文的时候这种控制的实验已经在图1所示的实验台上完成了,由于起重机上安装了载荷单向阀,所以稳定性没有达到要求。然而,用液压单向阀取代这种载荷单向阀,可以使系统的稳定。在液压系统中,载荷闭式阀可以实现超载保护和卸载保护两种功能。由于在这种控制方法中使用伸缩阀机构对卸载保护很起作用,因此在起升机构中很有必要使用有这种功能的单向阀。一个操作单向阀的驾驶员可以做这一点,没有增加复杂的动力来阻止起重机的倾。安装了这种单向阀,起重机操作人员不需要再增加更复杂的外力来防止起重机产生倾翻。5. 结束语即使没有大量的实验设施,但是实验还是完成了,一个好的开始是成功的一半。这个论文题的大轮阔已经确定,它是有意义而且合理的。这个工作分为需求分析、目前的系统分析、不同布局分析、近期的解决办法的分析和最优解决方案的发展趋势分析五个部分。在本论题的最后,液压随车起重机的控制模将会被修改。随车液压起重机的轨迹控制问题描述这项方案是根据如图1所示的多自由度随车液压起重机控制问题提出来的。控制随车起重机要求操作人员技术相当高,它的操作机动范围很小。如果可以让现代的起重机实现遥控控制的话,操作人员只需要控制他手中的遥控器就可以控制起重机把重物放在他要求的任何地方。一个按钮控制一个自由度方向上的转动。因此只需要让操作人员得到熟练的训练他就可以每次控制更多的按钮来实现多个自由度的转动。吊具总成图1所示为一台随车液压装载起重机部分液压系统控制图实例这项工程的目标是设计一台非熟练操作人员都能够控制的移动式液压起重机。操作人员根据吊具总成的合成轨迹控制一根操纵杆。这样不同的自由度就可以同时被控制。图2测试起重机图片多数随车液压起重机的结构就像图1所示的那样,大多数都是非常柔性化的,因此当受载时它们就会弯曲。这样做可以使起重机吊重比最低。事实上吊重顶端位置也是制约控制系统结构偏差的因素。这种问题可以通过一个好的位置偏差补偿控制系统解决,这个系统还可以消除操作初期结构上发生的摆动。 继续使结构轨迹偏差补偿控制系统在起重机上进一步发展,起重机的装载能力将可以大大得到提高。当这种在起重机里的摆动可以被控制系统抑制的方法能够得到充分证明,在一个长的期限里可能有一个降低动力学安全系数的机会。这将使起重机生产商和用户节省一大笔费用。方案内容现以一台如图2所示的HMF 680-4型随车液压起重机来分析这些问题。在这台起重机的不同位置安装了传感器来监视系统上的不同参数值,它们都是一些起重机上很重要的不同连接位置的压力、流量、应变参数值。实验测试可以证实起重机性能,所以可以通过精确的模型来测试起重机的性能。为了使所含盖的几个问题能够描述得更清楚,这些问题被简略的表述如下:1. 分析系统要求说明书 系统的执行标准分析已被完成。基于系统的这种要求连同确保系统的执行的检验程序将被列入清单。2. 机械子系统模型 许多技术模型已经存在,因此这些部件包括研究明确的模型局部动力学的表达方法。机械子系统的分析与局部模型偏差的详细分析相同。这样做是为了使计算的有效性能够明确表达出来,同时使系统的动作在控制过程中能够十分精确。基于这种非常有前景的用公式表示一个数学子系统模型的方法已经完成,它将从起重机试验台的实验结果中得到校验。3. 液压子系统模型 跟机械子系统建模一样,液压子系统模型由液压泵、不同的液压阀、激励源和液压导管组成。然而,并不是这些都要建模,只是那些对系统动力学部件影响比较大的成分才建模。液压子系统模型也需要用实验的方法来证明。除此之外是否在对偏差进行补偿时,系统中用了比重比较大的电液比例控制阀都必须被分析,即对机械结构的摆动进行分析。基于上述修正,对液压系统如果有必要都要做。4.分析和标准的解决反转运动结构 起重机相对于底部有一个可以操作的特定空间,即吊具总成能达到的范围。这是公认的起重机工作范围。有的部位要通过不同的路线才可以达到。因此有必要在这些区域确定最佳的运动结构。有不同的参数标准,习惯上用起重机上总负荷的最小值,也就是在临界状态点的最小压力值。为了做这个重要的结构压力分析,基于实现这个运算法则的控制系统将进一步得到发展。5.载荷判断方案的发展 为了实现起重机结构偏转补偿,需要知道起重机承受的有效载荷。因此,有必要进行不同的载荷在线可能情况分析,这样就可以判断哪一个传感器需要进行载荷复合鉴定。基于这种鉴定方案分析,可以实现最终的运算法则。6. 控制运算法则的发展 基于这种机械液压子系统模型,一种吊具总成位置轨迹控制的控制规律将会得到发展。这种控制规律可以保证系统按照吊臂顶的运动轨迹运行,并且系统在工作情况下保持稳定。这包含在载荷判断和运动学最佳参数方案的分析中。7. 控制系统的执行 最后系统的控制规律已经通过仿真试验得出,应该实现通过处理器或者数据信号处理检验系统实物了,即测试起重机。用这种测试方法将可以实现对系统制定测试,到测试结束的整个过程。这种测试技术还可以对一些典型系统进行控制。外文文献CONTROL OF MOBILE HYDRAULIC CRANESMarc E. MNZERAalborg UniversityInstitute of Energy TechnologyPontoppidanstrde 101DK-9220 Aalborg. DenmarkEmail: mmuniet. auc. dkThe goal of the thesis described in this paper is to improve the control of mobile hydraulic cranes. The thesis is split into five parts: a requirements analysis, an analysis of the current systems and their problems, an analysis of different possibiilities for system topologies, development of a new control system for the near future based on electro-hydraulic separate meter in / separate meter out valves, and finally an analysis of more advanced and complex solutions which can be applied in the more distant future. The work of the thesis will be done in cooperation with industry so the thesis will have more of an industrial focus than a purely theoretical focus.Key words: Mobile Hydraulic Cranes, Control strategies, Separate Meter-in/Separate Meter-out.1 INTRODUCTIONThe goal of the thesis described in this paper is to improve the control of mobile hydraulic cranes. A mobile hydraulic crane can be thought of as a large flexible mechanical structure which is moved by some sort of control system, The control system takes its input from a human operator and translates this command into the motion of actuators which move the mechanical structure.The definition of this control system is purposely left vague in order not to impose any constraints on its design. The control system consists of actuators which move the mechanical structure, a means of controlling the actuators, a means of supplying power to the actuators, and a way of accepting inputs from the operator. It is this control system which is the target of this thesis. The goal is to analyze the requirments made on the control system and present guidelines for the gesign of new control systems.The thesis will be split into five parts:1. Analysis of the requirements of the control system, from the perspective of the operator, the mechanical system, efficiency, stability, and safety requirements.2. Analysis of current control systems and what their problems are.3. Analysis of the different options for the control system: different types of actuators different types of control strategies, and different ways of organizing components.4. Presentation of a new type of control system, which is commercially implementable. A system that will meet the needs of industry in the near future.5. Analysis of more optimized systems, with higher performance, better efficiency, more flexible control, etc. This will be less commercially applicable but will be a starting point for more research.2 SECTIONS OF THE THESIS2.1 Requirements Analysis of the Control SystemBefore starting detailed work on developing new control systems, it is important to analyze what the exact demands are on the control system. The control system is influenced by many factors.For example: the mechanical structure it is controlling, the human operator, efficiency, stability, and industry requlations. Industry regulations are the first requirements that have to be addressed. Things like hose rupture protection and runaway load protection make a lot of demands on the control system. After regulations, stability is the next most important requirement; without stability the control system cant be used. Once stability has been assured, the performance requirements of the control system have to be set. They are determined by the mechanical structure of the crane and the human operator. The mechanical structure of a mobile hydraulic crane is a very necessary to keep the speed of the control system below this natural frequency or to develop a control system which can increase this frequency. The human operator also impossible limits on the control system. If the control system is too slow or too fast then it is impossible for a human operator to give it proper inputs. And finally, once the requlations have been met, stability is assured, and the performance is at the right level, the power efficiency of the control system has to be optimized.2.2 Analysis of Current Control SystemsBefore designing a new control system it is good to analyze the current control systems to find out what their problems are. Current control systems are mainly hydraulic and can suffer from three main problems:1. Instability2. High cost3. Inefficiency2.2.1 InstabilityInstability is a serious problem as it can cause injury to human operators or damage to equipment. When a system becomes unstable it usually starts to oscillate violently. To avoid instability in current systems, the designers either sacrifice certain functions which are desirable, or add complexity and cost. For example, in the crane shown in Figure 1, it would be desirable to have control over the speed. But due to the safety system that cranes are required to have, standard speed control is not stable. To add speed control requires a more complex and more expensive mechanical system. The parameters of a hydraulic system, such as temperature or load force, also affect stability. A system that is stable with one set of parameters might be unstable with another set. To ensure stability over the entire operating range of the system, performance must sometimes be sacrificed at one of the parameter range.2.2.2 High cost Current systems are purely hydraulic-mechanical, so if the user wants a certain function, the user buys a certain hydraulic-mechanical component. Because most user have different requirements, there are many different variations of the same basic component. This means that many specialized components must be manufactured rather than one standard product. This drives up the cost of components.2.2.3 InefficiencyOne form of inefficiency in current systems is due to the link between the flows of the two ports of the cylinder. This is because most valves use a single spool to control the flow in both ports. Because of this link, it is impossible to set the pressure levels in the two sides of the cylinder independently. Therefore, the outlet side will develop a back pressure which acts in opposition to the direction of travel, which increases the pressure required on the inlet side to maintain motion. Since the force generated by the actuator is proportional to the pressure difference between the two sides, the actual pressures in the cylinder dont affect the action of the cylinder. For example, the action of the cylinder for 0psi/600psi would be the same as 1000psi/1600psi. However, in the second case, the power supply would have to supply much more power. This extra power is wasted.2.3 Different Options for Control SystemsCurrent control systems use hydraulic actuators with directional/proportional valves to control the movement. However there are many different options for controlling a cylinder. Options range from new high performance electro-hydraulic valves, to separate meter in / separate meter out (SMISMO) valves, to hydraulic bus systems, to intelligent actuators with built in power supplies, to pump based control strategies. These systems all have advantages and disadvantages which need to be analyzed if the most optimum solution is to be chosen.2.4 Near Future Solution It is expected that even if it is proven that a completely new system topology is the optimum configuration, the crane manufacturers and component manufacturers will not accept the new technology overnight. This will most likely take time, so an interim solution will be developed. This solution will be made up of micro computer controlled Separate Meter In / Separate Meter Out (SMISMO) valves (Elfving, Palmberg 1997; Jansson, Palmberg, 1990; Mattila, Virvalo 1997). SMISMO valves will make it possible to implement new control strategies which are more efficient and stable. The micro computer will make it possible to introduce flexibility to valves. Variants can be programmed in software. This eliminates the need to manufacture hundreds of different variants. The crane manufacturer will be able to choose the exact functions he wants in his valve, while the component manufacturer will have to manufacture only one valve. This will lower the cost, even though the performance will have increased.2.5 Analysis of Higher Performance Solutions This analysis will depend on the results of the analysis of different topologies. If it is shown that pump based control is to be the way of the future for example, then analysis will be performed in this area. Another area which will also be explored, is tool position control.3 LABORATORY FACILITIESAs the focus of this thesis is on developing control strategies that can be implemented on commercial machinery, much emphasis will be placed on experimental results. Experimental results will be obtained from two systems. The first, a simple one degree of freedom crane, was designed as an experimental platform. The second is a real crane which was donated to the University by Hojbjerg Maskinfabrik (HMF) a Danish crane manufacturer. Refer to Figure 1.Figure 1 Experimental Systems in Laboratory. Left: One DOF crane model. Right: RealMobile Hydraulic CraneAs there are currently no commercially available separate meter-in/separate meter-out valves, two separate valves will be used instead. A sample circuit of one cylinder is shown in Figure 2. The control algorithms which control the valves, will be programmed on a Digital Signal Processor (DSP)/Pentium dual processor system. The DSP will run the control code and the Pentium will do diagnostics and provide a graphical user interface.Figure 2 Separate Meter In / Separate Meter Out Setup4 CURRENT WORK4.1 Flow Control by Direct Actuation of the Spool Most flow control valves on the market today work with a pressure compensator (Andersen; Ayers 1997). The pressure compensator keeps a constant pressure drop across the main spool of the valve, which keeps the flow constant. However, the addition of a pressure compensator makes the valve more complicated than a simple single spool valve. Another way of doing flow control is to measure the pressure drop across the valve and adjust the spool position to account for this (Back; Feigel 1990). This is not a new idea but has not been implemented commercially because of the high cost of pressure transducers and micro controllers. However, with the current drop in cost of micro controllers and pressure transducers this idea is now commercially feasible. The concept is very simple, spool position is calculated from the Bernoulli equation using the pressure drop across the spool and reference flow. Even though this is a simple equation, it is not easy to implement. The accuracy of the flow control is dependent on the precision of the position sensors and of the pressure transducers. Noise on the pressure or the position signals can cause stability problems. Filtering the noise, introduces delays in the control which can also affect stability. In addition the Bernoulli equation is not followed exactly over the entire operating range of the valve, so it may be necessary to store the valve characteristics as a data table or develop a more complex equation.4.2 Cylinder Control StrategyTo control a hydraulic cylinder, the strategy has to be able to handle four different situations depending on the directions of the load and the velocity of the cylinder. Refer to Figure 3.Figure 3 Different Situations in Crane Operation The control strategies that have appeared in the literature are usually quite complex and depend on measurements of the cylinder position and velocity (Elfving, Palmberg 1997; Mattila; Virvalo 1997). They are also based on rather complex control algorithms. It is the goal of this thesis to start with a control strategy which is based on simple PI controllers and makes no demands for position and velocity of the cylinder. The performance of this system will be lower than a complex control strategy, but it may be easier to implement commercially because it has no need for special sensors and is easier to understand for the average engineer. Another feature which needs to be acknowledged when designing a control strategy, is the type of valve used. Mobile hydraulic valves demand low leakage and since most mobile valves are spool valves, they usually have large overlaps. In addition, to make the cost of the valve acceptable to industry, the actuation stage on the spool is usually quite slow. This combination of large overlap and slow actuation makes it hard to implement many of the strategies that have been presented. Pressure control especially becomes difficult when there is an overlap and a slow actuator.One example of a new strategy which is simple and robust is described as follows. Flow control is implemented on the inlet side and pressure control is implemented on the outlet side. The flow control is based on the Bernoulli equation. Pressure control is done by PI controller which maintains a low constant pressure to increase the efficiency and prevent cavitation. To work around large overlaps and slow actuation stage, the pressure controller only does meter out control. This means that if the controller wishes to raise the pressure, it cant add flow to the cylinder, it can only decrease the opening of the meter out port. The benefit of this is that the only time that the spool has to cross the zero position is when the operator wishes to change the direction of motion of the cylinder. For the case where the load force and the velocity are in the same direction, this strategy has to be modified. In this case, the pressure reference of the pressure controller at the outlet is increased to a value which opposes the load force. The pressure reference is increased when it is noticed that the pressure of the inlet side is dropping. The pressure reference is also controlled by a PI controller. A schematic model of the controller system for the load lowering case is shown in Figure 4. At the time of writing this paper the initial experimental tests had performed on the real crane shown in Figure 1. Stability was not achieved because the crane is equipped with a load holding valve. However, the load holding valve will be replaced with a pilot operated check valve, which should make it possible to stabilize the system. In current systems, the load holding valve serves two functions, load holding and runaway load protection. Due to the use of a SMISMO valve setup, the runaway load protection is built into the control strategy, therefore the only function which is necessary for the load holding valve to perform is load holding. A pilot operated check valve will be able to do this, without adding complex dynamics which upset the stability of the system.Figure 4 Controller Strategy for Lowering of Load5 CONCLUSION Even though not much experimental work has been finished, a good start has been made and initial tests have been promising. The outline of the thesis has been developed and organized in a logical manner. The work is split into five parts, requirements analysis, analysis of current systems, analysis of different topologies, development of a near future solution, and development of a more optimum solution. At the end of the thesis, the control of mobile hydraulic cranes will have been improved.6 ACKNOWLEDGEMENTS This project is being funded in part by Danfoss Fluid Power A/S. The author would also like to thank Hojbjerg Maskinfabrik (HMF) A/S for the donation of the test crane.7 REFERENCESAndersen, B. R.; Ayres, J. L. (1997). Load Sensing Directional Valves, Current Technology and Future Development, The Fifth Scandinavian International Conference on Fluid PowerBack, W.; Feigel, H. (1990). Neue Mglichkeiten Beim Elektrohydraulischen Load-Sening, O+P lhydraulik und Pneumatik 34Elfving, M.; Palmberg, J. O. (1997). Distributed Control of Fluid Power Actuators-Experimental Verification of a Decoupled Chamber Pressure Controlled Cylinder, 4th International Conference on Fluid PowerJansson, A.; Palmberg, J. O. (1990). Separate Controls of Meter-in and Meter-Out Orifices in Mobile Hydraulic Systems, International Off-Highway and Powerplant Congress and Exposition Mattila, J.; Virvalo, T. (1997). Computed Force Control of Hydraulic Manipulators, 5th Scandinavian International Conference On Fluid PowerTrajectory Control of Mobile Hydraulic CraneEMSD 9/10 - 69CProblem DescriptionThis project takes its base in the problem of controlling mobile hydraulic cranes with multiple degrees of freedom, such as the one shown in figure 1. Controlling a mobile hydraulic crane takes a highly trained operator as it is often operated in areas with little space for maneuverability. Modern cranes are sometimes fitted with radio control so that if possible, the operator can be placed close at hand of where the load must be positioned. Still only one degree of freedom is controlled per button/handle. Therefore only if the operator has been sufficiently trained he/she may control two or more degrees of freedom at a time by operating more buttons.Figure1 Drawing showing a example of a hydraulic loader crane, for mounting on lorry. Only parts of the hydraulical system is sketched.The aim of this project is to develop a control system for a mobile hydraulic crane so that less training of the operator is needed. This is incorporated through trajectory control of the tool center of the crane by operating a joystick only. In this way multiple degrees of freedom are controlled simultaneously.Mobile hydraulic crane structures like the one depicted in figure 1 are normally also very flexible, i.e. they bend when they are loaded. This is due to highly optimized constructions regarding material usage, in order to keep the weight down. As it is the position of the tool center that is controlled the control system should also compensate for this structural deflection. This way by having an adequately good control system Which compensates for deflection, the system may also eliminate the possibilities for the operator to initialize oscillations in the structure.Making use of a trajectory control system with compensation for structural deflection will therefore expand the possibility of utilising the crane to its maximum regarding loading capability. In long term this may give the opportunity to lower the crane will be damped by the control system. All together this results in advantages for both manufacturer and end user advantages through a higher cost/capacity-ratio and a more easily controlled system.Project Contents The problem described will practically be delt with using a HMF 680-4 mobile hydraulic crane, a picture of this may be seen in figure 2. The crane is mounted with sensors for monitoring different parameters in the system, which are the most important pressures, flows, strains and relative link positions of the crane. This crane will be the basis for the experimental testing and verification, and therefore also for the mathematical models derived. In order to fulfil the above described problem several subjects has to be covered, in short these are:Figure 2 Picture of the text crane.1. Analysis and specification of the demands for the systemAn analysis of performance criterias for the system is to be made. Based on this demands for the system will be specified along with testing procedures for the system to ensure the system fulfill the demands.2. Model ling of the mechanical subsystem Many different model ling techniques exist, and therefore this part includes studying formulations methods for model ling multi-body dynamics. In particular an analysis of how to model the deflections in the mechanical subsystem should be made. The purpose is to arrive at a formulation which is computational efficient, but at the same time sufficiently accurate in describing the behaviour of the mechanical sy
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:液压起重台车设计【8张CAD图纸+毕业论文】【答辩通过】
链接地址:https://www.renrendoc.com/p-437691.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!