




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5 3平面向量的数量积与平面向量的应用 2 知识梳理 双基自测 2 3 4 1 6 5 7 自测点评 1 平面向量的数量积 1 定义 已知两个非零向量a与b 它们的夹角为 则数量 a b cos 叫做a与b的数量积 或内积 记作a b 即a b 规定零向量与任一向量的数量积为0 即0 a 0 2 几何意义 数量积a b等于a的长度 a 与b在a的方向上的投影 b cos 的乘积 8 a b cos 3 知识梳理 双基自测 自测点评 2 3 4 1 6 5 7 2 平面向量数量积的性质及其坐标表示设向量a x1 y1 b x2 y2 为向量a b的夹角 1 数量积 a b a b cos 8 x1x2 y1y2 4 知识梳理 双基自测 自测点评 2 3 4 1 6 5 7 5 已知两非零向量a与b a b a b 0 a b a b a b 6 a b a b 当且仅当a b时等号成立 即 8 x1x2 y1y2 0 5 知识梳理 双基自测 自测点评 2 3 4 1 6 5 7 3 平面向量数量积的运算律 1 a b b a 交换律 2 a b a b a b 结合律 3 a b c a c b c 分配律 8 6 知识梳理 双基自测 自测点评 2 3 4 1 6 5 7 4 平面向量数量积运算的常用公式 1 a b a b a2 b2 2 a b 2 a2 2a b b2 8 7 知识梳理 双基自测 自测点评 2 3 4 1 6 5 7 8 8 知识梳理 双基自测 自测点评 2 3 4 1 6 5 7 6 向量在三角函数中的应用对于向量与三角函数结合的题目 其解题思路是用向量运算进行转化 化归为三角函数问题或三角恒等变形等问题或解三角形问题 8 9 知识梳理 双基自测 自测点评 2 3 4 1 6 5 7 7 向量在解析几何中的应用向量在解析几何中的应用 主要是以向量的数量积给出一种条件 通过向量转化 进而利用直线和圆锥曲线的位置关系等相关知识来解答 8 10 知识梳理 双基自测 2 3 4 1 6 5 7 自测点评 8 8 向量在物理中的应用物理学中的力 速度 位移都是矢量 它们的分解 合成与向量的加减法相似 因此可以用向量的知识来解决某些物理问题 物理学中的功是一个标量 是力f与位移s的数量积 即w 为f与s的夹角 f s cos 2 11 知识梳理 双基自测 3 4 1 5 自测点评 1 下列结论正确的打 错误的打 1 一个向量在另一个向量方向上的投影为数量 且有正有负 2 若a b 0 则a和b的夹角为锐角 若a b 0 则a和b的夹角为钝角 3 若a b 0 则必有a b 4 a b c a b c 5 若a b a c a 0 则b c 答案 12 知识梳理 双基自测 自测点评 2 3 4 1 5 2 已知向量a 1 m b 3 2 且 a b b 则m a 8b 6c 6d 8 答案 13 知识梳理 双基自测 自测点评 2 3 4 1 5 a 30 b 45 c 60 d 120 答案 14 知识梳理 双基自测 自测点评 2 3 4 1 5 4 教材例题改编p93例1 已知 a 2 b 4 a b 4 则a与b的夹角 答案 15 知识梳理 双基自测 自测点评 2 3 4 1 5 5 已知a 2 1 b 3 若a与b的夹角为钝角 则 的取值范围是 答案 解析 16 知识梳理 双基自测 自测点评 1 因为 a b cos 和 b cos 都是数量 所以a b和b在a方向上的投影都是一个数量 而不是向量 2 对于两个非零向量a与b 由于当 0 时 a b 0 所以a b 0是两个向量a b夹角为锐角的必要而不充分条件 a b 0也不能推出a 0或b 0 因为a b 0时 有可能a b 3 在实数运算中 若a b r 则 ab a b 若a b a c a 0 则b c 但对于向量a b却有 a b a b 若a b a c a 0 则b c不一定成立 原因是a b a b cos 当cos 0时 b与c不一定相等 4 向量数量积的运算不满足乘法结合律 即 a b c不一定等于a b c 这是由于 a b c表示一个与c共线的向量 而a b c 表示一个与a共线的向量 而c与a不一定共线 17 考点1 考点2 考点3 答案 18 考点1 考点2 考点3 19 考点1 考点2 考点3 20 考点1 考点2 考点3 解题心得1 求两个向量的数量积有三种方法 1 当易知向量的模和夹角时 利用定义求解 即a b a b cos 其中 是向量a与b的夹角 2 当已知向量的坐标时 可利用坐标法求解 即若a x1 y1 b x2 y2 则a b x1x2 y1y2 3 利用数量积的几何意义 数量积a b等于a的长度 a 与b在a的方向上的投影 b cos 的乘积 2 解决涉及几何图形的向量数量积运算问题时 可利用向量的加减运算或数量积的运算律化简 但一定要注意向量的夹角与已知平面角的关系是相等还是互补 21 考点1 考点2 考点3 对点训练1 1 2016天津 文7 已知 abc是边长为1的等边三角形 点d e分别是边ab bc的中点 连接de并延长到点f 使得 2 已知a 1 2 2a b 3 1 则a b a 2b 3c 4d 5 3 已知两个单位向量e1 e2的夹角为 若向量b1 e1 2e2 b2 3e1 4e2 则b1 b2 答案 22 考点1 考点2 考点3 23 考点1 考点2 考点3 24 考点1 考点2 考点3 25 考点1 考点2 考点3 答案 26 考点1 考点2 考点3 27 考点1 考点2 考点3 28 考点1 考点2 考点3 解题心得1 求向量的模的方法 的运算转化为数量积运算 2 几何法 利用向量加减法的平行四边形法则或三角形法则作出向量 再利用余弦定理等方法求解 2 求向量模的最值 或范围 的方法 1 求函数最值法 把所求向量的模表示成某个变量的函数再求 2 数形结合法 弄清所求的模表示的几何意义 结合动点表示的图形求解 29 考点1 考点2 考点3 答案 30 考点1 考点2 考点3 31 考点1 考点2 考点3 32 考点1 考点2 考点3 答案 33 考点1 考点2 考点3 34 考点1 考点2 考点3 答案 解析 35 考点1 考点2 考点3 36 考点1 考点2 考点3 37 考点1 考点2 考点3 38 考点1 考点2 考点3 答案 39 考点1 考点2 考点3 40 考点1 考点2 考点3 解题心得1 数量积大于0说明不共线的两个向量的夹角为锐角 数量积等于0说明不共线的两个向量的夹角为直角 数量积小于0说明不共线的两个向量的夹角为钝角 2 若a b为非零向量 则a b a b 0 3 解决与向量有关的三角函数问题的一般思路是应用转化与化归的数学思想 即通过向量的相关运算把问题转化为三角函数问题 4 向量在解析几何中的作用 1 载体作用 解决向量在解析几何中的问题时关键是利用向量的意义 运算脱去 向量外衣 导出曲线上点的坐标之间的关系 从而解决有关距离 斜率 夹角 轨迹 最值等问题 2 工具作用 利用数量积与共线定理可解决垂直 平行问题 特别地 向量垂直 平行的坐标表示对于解决解析几何中的垂直 平行问题是一种比较可行的方法 41 考点1 考点2 考点3 2 已知平面向量a 1 2 b 4 2 c ma b m r 且c与a的夹角等于c与b的夹角 则m 3 2016山东昌乐二中模拟 已知向量m 2cos x 1 n sin x cos x 2 0 函数f x m n 3 若函数f x 的图象的两个相邻 b 2 42 考点1 考点2 考点3 a 43 考点1 考点2 考点3 44 考点1 考点2 考点3 45 考点1 考点2 考点3 46 考点1 考点2 考点3 47 考点1 考点2 考点3 1 平面向量的坐标表示与向量表示的比较 已知a x1 y1 b x2 y2 是向量a与b的夹角 48 考点1 考点2 考点3 2 计算数量积的三种方法 定义 坐标运算 数量积的几何意义 要灵活选用 与图形有关的不要忽略数量积几何意义的应用 3 利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧 4 解决平面向量与三角函数的交汇问题 关键是准确利用向量的坐标运算化简已知条件 将其转化为三角函数中的有关问题解决 5 解决向量与解析几何的综合问题 可将向量用点的坐标表示 利用向量运算及性质转化为解析几何问题 6 向量中有关最值问题的求解思路 一是 形化 利用向量的几何意义将问题转化为平面几何中的最值或范围问题 二是 数化 利用平面向量的坐标运算 把问题转化为代数中的函数最值 不等式的解集 方程有解等问题 49 考点1 考点2 考点3 1 根据两个非零向量夹角为锐角或钝角与数量积的正 负进行转化时 不要遗漏共线的情况 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沙漠游记题目及答案解析
- 2023-2024学年山东省部分学校高二下学期期末联合教学质量检测数学试卷(解析版)
- 2023-2024学年湖北省十堰市高二下学期6月期末调研考试数学试卷(解析版)
- 2024-2025学年浙江省嘉兴市高二上学期期末考试语文试题(解析版)
- 店面房屋租赁协议-房屋店面租赁合同模板-店面房屋租赁协议
- 高层建筑结构试题库
- 高中语文选择性必修下册8《茶馆》课件(32张课件)
- 饮酒检讨书范文
- 口服保肝药讲课件
- 佛山校园封闭管理制度
- 大学语文-第四讲魏晋风度和魏晋文学-课件
- 我们毕业啦毕业季通用模板课件
- 小升初数学复习八(平面图形)讲义课件
- (完整版)基建建设工程流程图
- 墙体开槽技术交底及记录
- 国家开放大学《调剂学(本)》形考任务1-4参考答案
- 公务员工资套改和运行案例
- 铁路货物装载常用计算公式
- 哥尼斯堡七桥问题PPT课件
- 总包(消防)管理方案
- 工具钳工理论知识鉴定要素细目表09版
评论
0/150
提交评论