


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
26.1.5用待定系数法求二次函数的解析式学前温故1(1)二次函数ya(xh)2的图象与yax2的图象形状,开口方向都完全_,但_和_不同;(2)抛物线ya(xh)2的顶点坐标为_,对称轴是直线_;(3)抛物线yax2向左平移h个单位,即为抛物线_,把抛物线yax2向右平移h个单位,即为抛物线_2抛物线ya(xh)2k有如下特点:(1)当a0时,开口_;当a0时,开口_(2)对称轴是直线_(3)顶点坐标是_新课早知1对于二次函数yax2bxc(a0),(1)它的图象是一条_(2)对称轴是直线_,顶点坐标是.(3)当a0时,抛物线的开口向_,顶点是抛物线上的最_点在对称轴的左侧,y随x的增大而_,在对称轴的右侧,y随x的增大而_;当a0时,抛物线的开口向_,顶点是抛物线上的最_点在对称轴的左侧,y随x的增大而_;在对称轴的右侧,y随x的增大而_2已知二次函数yx2bx3的对称轴为直线x2,则b_.3求二次函数yax2bxc的解析式,关键是求出待定系数_的值由已知条件(如二次函数图象上三个点的坐标)列出关于_的方程组,并求出_,就可以写出二次函数的解析式4二次函数的图象经过点a(0,3),b(2,3),c(1,0)则此二次函数的关系式是_;图象的顶点坐标是_答案:学前温故1(1)相同顶点对称轴(2)(h,0)xh(3)ya(xh)2ya(xh)22(1)向上向下(2)xh(3)(h,k)新课早知1(1)抛物线(2)x(3)上低减小增大下高增大减小243.a,b,ca,b,ca,b,c4yx22x3(1,4)设yax2bxc,把点a(0,3),b(2,3),c(1,0)代入,得解得则yx22x3(x1)24.故函数的顶点坐标为(1,4)1二次函数yax2bxc的图象与性质【例1】二次函数yax2bxc的图象的一部分如图所示,已知它的顶点m在第二象限,且经过点a(1,0)和点b(0,1)(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为c,当amc的面积为abc面积的倍时,求a的值解:(1)由图象可知,抛物线过(0,1),(1,0),将(0,1),(1,0)代入yax2bxc,得c1,abc0,b(a1)抛物线的顶点在第二象限,0.又b(a1),0,即a(a1)0.1a0.(2)过点m作mdx轴,垂足为d,amc与abc同底,则mdob,即,4ab25a.4a(a1)25a.a.1a0,a.2用待定系数法求二次函数的解析式【例2】一抛物线与x轴的交点是a(2,0),b(1,0),且经过点c(2,8)(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标解:(1)设这个抛物线的解析式为yax2bxc.由已知,抛物线过a(2,0),b(1,0),c(2,8)三点,得解得故所求抛物线的解析式为y2x22x4.(2)y2x22x42(x2x2)22,故该抛物线的顶点坐标为.点拨:待定系数法是求抛物线解析式常用的方法1抛物线y2x24x3的顶点坐标是()a. (1,5) b. (1,5)c. (1,4) d. (2,7)2已知二次函数yax2bxc中,其函数y与自变量x之间的部分对应值如下表所示:x01234y41014点a(x1,y1),b(x2,y2)在函数的图象上,则当1x12,3x24时,y1与y2的大小关系正确的是()a. y1y2 b. y1y2c. y1y2 d. y1y23二次函数y的图象是由函数y的图象先向_(左、右)平移_个单位,再向_(上、下)平移_个单位得到的4小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入12345输出25101726若输入的数据是x时,输出的数据是y,y是x的二次函数,则y与x的函数表达式为_5已知二次函数y(x2a)2(a1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”下图分别是当a1,a0,a1,a2时二次函数的图象它们的顶点在一条直线上,这条直线的解析式是y_.6二次函数图象如图所示,试写出它的函数表达式答案:1a方法一(配方法):y2x24x3222(x1)25,顶点坐标为(1,5)方法二(公式法):a2,b4,c3,1,5.顶点坐标为(1,5)2b3左3下2一般先将二次函数由一般式化成顶点式,再确定上下左右平移的单位yx23x(x26x5)(x26x995)(x3)22.即抛物线yx23x是由抛物线yx2向左平移3个单位,再向下平移2个单位得到的4yx21设函数表达式为ya
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国大唐印尼公司职业发展面试预测题集
- 拇外翻的护理课件
- 2025年超多道数字地震仪合作协议书
- 2025年新能源环卫装备项目建议书
- 2025年电梯、自动扶梯及升降机项目建议书
- 2025年植物原药项目发展计划
- 2025年消雾塔项目发展计划
- 抚顺公务员专业知识培训课件
- 抗震防灾减灾课件
- 抗生素知识培训课件
- JG/T 155-2014电动平开、推拉围墙大门
- 托业考试模拟试题及答案
- 2025消瘦诊治与管理专家共识解读课件
- DB32/T 3390-2018一体化智能泵站应用技术规范
- 2025年北京市丰台区九年级初三二模英语试卷(含答案)
- 朋友名义贷款车协议书
- GB/T 18867-2025电子气体六氟化硫
- 社交媒体使用与青少年心理健康的关系研究
- (高清版)DG∕TJ 08-15-2020 绿地设计标准 附条文说明
- 2025年下半年福建漳州片仔癀药业股份限公司招聘96人易考易错模拟试题(共500题)试卷后附参考答案
- 律师证考试试题及答案
评论
0/150
提交评论