装配图.dwg
装配图.dwg

遥控器盒盖的塑料模具设计[三维PROE]【21张CAD图纸+WORD毕业论文】【注塑模具类】

收藏

资源目录
跳过导航链接。
遥控器盒盖的塑料模具设计[三维PROE]【CAD图纸+WORD毕业论文】【注塑模具类】.rar
装配图.dwg---(点击预览)
毕业论文.doc---(点击预览)
开题报告.doc---(点击预览)
09-定模型腔.dwg---(点击预览)
08-定模板.dwg---(点击预览)
07-动模型芯.dwg---(点击预览)
06-动模板.dwg---(点击预览)
05-推杆垫板.dwg---(点击预览)
04-推杆固定板.dwg---(点击预览)
03-动模座板.dwg---(点击预览)
022-定位环.dwg---(点击预览)
02-浇口套.dwg---(点击预览)
019-遥控器盒盖.dwg---(点击预览)
018-支撑钉.dwg---(点击预览)
017-复位杆.dwg---(点击预览)
016-推杆.dwg---(点击预览)
015-导套.dwg---(点击预览)
014-导柱.dwg---(点击预览)
013-定模座板.dwg---(点击预览)
012-垫块1.dwg---(点击预览)
011-侧滑芯.dwg---(点击预览)
010-侧滑座.dwg---(点击预览)
01-定位环.dwg---(点击预览)
PROE
aa.prt.1
ad.prt.1
bb.prt.1
bd.prt.1
cc01.prt.1
cc02.prt.1
ddz6_00-8050.prt.1
ddz6_00-8051.prt.1
ddz6_00-8052.prt.1
ddz6_00-8053.prt.1
ddz6_00-8054.prt.1
ddz6_00-8055.prt.1
ddz6_00-8057.prt.1
ddz6_00-8058.prt.1
ddz6_00-8059.prt.1
ddz6_00-8060.prt.1
ddz6_00-8061.prt.1
ddz6_00-8063.prt.1
ddz6_00-8064.prt.1
ddz6_00-8065.prt.1
ddz6_00-8066.prt.1
ddz6_00-8067.prt.1
ddz6_00-8068.prt.1
ddz6_00-8069.prt.1
ddz6_00-8070.prt.1
ddz6_00-8071.prt.1
ddz6_00-8072.prt.1
ddz6_00-8073.prt.1
ddz6_00-8074.prt.1
ddz6_00-8075.prt.1
ddz8_00-8049.prt.1
ddz8_00-8056.prt.1
ddz8_00-8062.prt.1
dzdb.prt.1
dzmb.prt.1
fth30_00-90_00-8076.prt.1
fth30_00-90_00-8077.prt.1
fth30_00-90_00-8078.prt.1
fth30_00-90_00-8079.prt.1
ljd-8080.prt.1
ljd-8081.prt.1
ljd-8082.prt.1
ljd-8083.prt.1
ljd-8084.prt.1
ljd-8085.prt.1
ljd-8086.prt.1
ljd-8087.prt.1
ljd-8088.prt.1
ljd-8089.prt.1
ljd-8090.prt.1
ljd-8091.prt.1
lkm-ci.prt.1
m5_00-35_00-8006.prt.1
m5_00-35_00-8007.prt.1
m5_00-35_00-8014.prt.1
m5_00-35_00-8015.prt.1
m5_00-35_00-8019.prt.1
m5_00-35_00-8021.prt.1
m5_00-35_00-8022.prt.1
m5_00-35_00-8024.prt.1
m5_00-45_00-8000.prt.1
m5_00-45_00-8001.prt.1
m5_00-45_00-8003.prt.1
m5_00-45_00-8004.prt.1
m5_00-45_00-8027.prt.1
m5_00-45_00-8028.prt.1
m5_00-45_00-8029.prt.1
m5_00-45_00-8030.prt.1
m8_00-50_00-8098.prt.1
m8_00-50_00-8099.prt.1
m8_00-50_00-8100.prt.1
m8_00-50_00-8101.prt.1
m8_00-50_00-8102.prt.1
m8_00-50_00-8103.prt.1
m8_00-55_00-8008.prt.1
m8_00-55_00-8009.prt.1
m8_00-55_00-8010.prt.1
m8_00-55_00-8017.prt.1
m8_00-55_00-8018.prt.1
m8_00-55_00-8023.prt.1
m8_00-60_00-8033.prt.1
m8_00-60_00-8034.prt.1
m8_00-60_00-8035.prt.1
m8_00-60_00-8036.prt.1
m8_00-60_00-8037.prt.1
m8_00-60_00-8038.prt.1
manifold_solid_brep_7952.prt.1
manifold_solid_brep_7953.prt.1
manifold_solid_brep_7954.prt.1
manifold_solid_brep_7955.prt.1
manifold_solid_brep_7956.prt.1
manifold_solid_brep_7957.prt.1
manifold_solid_brep_7958.prt.1
manifold_solid_brep_7999.prt.1
manifold_solid_brep_8002.prt.1
manifold_solid_brep_8005.prt.1
manifold_solid_brep_8011.prt.1
manifold_solid_brep_8012.prt.1
manifold_solid_brep_8013.prt.1
manifold_solid_brep_8016.prt.1
manifold_solid_brep_8020.prt.1
manifold_solid_brep_8025.prt.1
manifold_solid_brep_8026.prt.1
manifold_solid_brep_8031.prt.1
manifold_solid_brep_8032.prt.1
manifold_solid_brep_8039.prt.1
manifold_solid_brep_8040.prt.1
manifold_solid_brep_8041.prt.1
manifold_solid_brep_8042.prt.1
manifold_solid_brep_8043.prt.1
manifold_solid_brep_8044.prt.1
manifold_solid_brep_8045.prt.1
manifold_solid_brep_8046.prt.1
manifold_solid_brep_8047.prt.1
manifold_solid_brep_8048.prt.1
manifold_solid_brep_8092.prt.1
manifold_solid_brep_8093.prt.1
manifold_solid_brep_8094.prt.1
manifold_solid_brep_8095.prt.1
manifold_solid_brep_8096.prt.1
manifold_solid_brep_8097.prt.1
manifold_solid_brep_8104.prt.1
manifold_solid_brep_8105.prt.1
manifold_solid_brep_8106.prt.1
manifold_solid_brep_8107.prt.1
manifold_solid_brep_8108.prt.1
manifold_solid_brep_8109.prt.1
manifold_solid_brep_8110.prt.1
manifold_solid_brep_8111.prt.1
manifold_solid_brep_8112.prt.1
manifold_solid_brep_8113.prt.1
manifold_solid_brep_8114.prt.1
mppj-7960.prt.1
mppj-7961.prt.1
mppj-7962.prt.1
mppj-7963.prt.1
mppj-7965.prt.1
mppj-7966.prt.1
mppj-7967.prt.1
mppj-7968.prt.1
mppj-7969.prt.1
mppj-7970.prt.1
mppj-7972.prt.1
mppj-7973.prt.1
mppj-7974.prt.1
mppj-7975.prt.1
mppj-7980.prt.1
mppj-7981.prt.1
mppj-7982.prt.1
mppj-7983.prt.1
mppj-7984.prt.1
mppj-7985.prt.1
mppj-7986.prt.1
mppj-7987.prt.1
mppj-7988.prt.1
mppj-7990.prt.1
mppj-7991.prt.1
mppj-7992.prt.1
mppj-7993.prt.1
mppj-7995.prt.1
mppj-7996.prt.1
mppj-7997.prt.1
mppj-7998.prt.1
std.out
template.err.1
template.err.2
zzzz_stp.asm.1
外文翻译
压缩包内文档预览:
预览图
编号:438603    类型:共享资源    大小:24.21MB    格式:RAR    上传时间:2015-06-03 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
遥控器 盒盖 塑料 模具设计 三维 proe cad 图纸 word 毕业论文 注塑 模具
资源描述:

摘要

   塑料注射模具是工业生产的基础工艺设备,在电子、汽车、电机、电器、仪表、家电和通讯等产品中,60%-80%的零部件,都要依靠模具成形。它不仅直接影响工业产品的水平,也是一个国家工业化程度和机械制造工业技术水平的综合体现。

   本文详细介绍了遥控器盒盖的塑料模具设计,主要包括:塑件材料的分析与设计方案的论证;注塑机的选择;模具结构的设计;成型零件的设计;导向机构的设计;脱模机构的设计;侧向分型与抽芯机构的设计等。本次设计为一模两腔,塑件材料选用了丙烯腈-丁二烯-苯乙烯共聚物(即工程材料ABS),浇口形式选用了侧浇口。通过以下计算和设计是可行的,并可以应用到实际生产中。

   通过本设计,可以对注塑模具有一个初步的认识,注意到设计中的某些细节问题,了解模具结构及工作原理;通过对PROGRAM的学习,可以建立较简单零件的零件库,从而有效的提高工作效率。  


关键词: 注塑模具;导向机构;脱模机构;遥控器          


Plastic Mold Design and Remote Control

Abstract

   Plastic injection mold is industrial production process and equipment, based in electronics, automobile, motor, electrical, instrumentation, home appliance and communications, and other products, 60%-80% parts, all want to rely on that of die forming. It not only directly influences the level of industrial products, and also is a country degree industrialization and machinery manufacturing industry technology level of comprehensive embodiment.

   This paper introduces the mould design of remote controller. Mainly include analysis of plastic material and argumentation of design project; selecting injection machine; devising mold structure; devising molding parts; devising oriented framework; devising stripping framework; devising side parting and pulling framework. The mold is consisted of two cavities. The plastic material select acrylonitrile butadiene-styrene copolymer (i. e. engineering material ABS). The sprue form choose a side gate. By the following calculation and design is feasible, and can be applied to practical production.  

   Through this design, may to cast the mold to have a preliminary understanding, notes in the design certain detail question, understands the mold structure and the principle of work; Through to the PROGRAM study, may establish the simple components the components storehouse, thus effective enhancement working efficiency.


Key Words: Injection Mold; Devising Oriented Framework; Pulling Framework; Remote Control



目  录

1  绪论1

1.1概述1

1.2题目国内外相关研究情况1

1.3塑料模具的发展趋势2

1.4研究本课题的意义3

2  塑件材料分析和工艺分析4

2.1塑件的工艺分析4

2.1.1塑件的材料4

2.1.2 ABS的成型性能 4

2.1.3塑件的基本特性5

2.1.4苯乙烯-丁二烯-丙烯腈(ABS)的注射成型工艺参数5

2.2 塑件的成型工艺及原理6

2.2.1塑件的结构设计6

2.2.2塑件的尺寸及精度7

2.2.3塑件的尺寸及精度7

2.2.4塑件的体积和质量7

2.3注塑模的机构组成7

2.4模具的方案选择7

3  注塑机的选择9

3.1 型腔数目的确定9

3.2 浇口种类确定9

3.3 选择注射机及注射机的主要参数9

3.3.1 注射机的类型9

3.3.2 注射机成型工艺分析10

      3.3.3注塑机的校核11

      3.3.4塑件在分型面上的投影面积和锁模力的核12

      3.3.5模具与注射机安装模具部分相关尺寸核.12

4  模具结构的设计14

4.1浇注系统13

4.1.1浇注系统的作用13

4.1.2浇注系统布置13

4.2浇注系统设计14

4.2.1浇注系统的组成14

4.2.2浇注系统的设计原则15

4.2.3主流道的设计15

4.2.4分流道的设计16

4.2.5浇口的设计16

4.2.6冷料穴的设计16

4.2.7浇口的位置设计17

5  成型零件设计18

5.1分型面的设计18

5.2成型零件应具备的性能189

5.3成型零件的结构设计19

5.3.1凹模(型腔)结构设计19

5.3.2型芯的结构设计20

5.4成型零件工作尺寸计算20

5.4.1影响塑件尺寸和精度的因素22

5.4.2成型零件工作尺寸的计算22

5.4.3成形型腔壁厚的计算25

   5.5模架的选择20

6  导向机构的设计28

6.1导向机构的作用28

6.2导柱导向机构28

6.2.1导向机构的总体设计28

6.2.2导柱的设计29

6.2.3导套的设计29

7  脱模机构的设计29

7.1脱模机构的结构组成30

7.1.1脱模机构的设计原则30

7.1.2脱模机构的结构30

7.1.3脱模机构的分类30

7.2脱模力的计算31

7.3脱模机构31

7.3.1推杆机构的设计31

8  侧向分型与抽芯机构设计33

8.1侧向分型与抽芯机构的分类33

8.2液压油缸侧向抽芯机构设计32

      8.2.1导滑槽设计33

      8.2.2滑块定位装置设计33

8.2.3楔紧块设计33  

8.3抽芯的计算33

     8.3.1抽芯距的计算33

      8.3.2抽芯力的计算33

9  排气系统的设计35

10 温度调节系统的设计36

10.1温度调节系统的作用36

10.1.1温度调节系统的要求36

10.1.2温度调节系统对塑件质量的影响36

10.2冷却系统的机构37

10.2.1模具冷却系统的设计原则37

10.2.2模具冷却系统的结构38

11  塑料模具用钢39

12  模具可行性分析40

12.1本模具的特点40

12.2市场效益及经济效益分析40

12.3模具爆炸图40

12.4模具装配图41

13 总结42

致谢44

参考文献45

毕业设计(论文)知识产权声明46

毕业设计(论文)独创性声明47

附录48




1  绪论

1.1 概述

   塑料注射模具是工业生产的基础工艺设备。振兴和发展我国的模具工业,日益受到人们的重视和关注。在电子、汽车、电机、电器、仪表、家电和通讯等产品中,60%-80%零部件,都要依靠模具成形。用模具生产制作所表现出来的高精度、高复杂程度、高一致性、高生产率和低消耗,是其他加工制造方法所不能比拟的。模具又是“效率放大器”,用模具生产的最终产品的价值,往往是模具自身价值的几十倍、上百倍。因此,塑料模具技术,特别是制造精密、复杂、大型模具的技术,已成为衡量一个国家机械制造水平的重要标志之一。

   整体来看,中国塑料模具无论是在数量上,还是质量、技术和能力等方面都有了很大的进步,但与国民经济发展的需求、世界先进水平相比,差距任然很大。一些大型、精密、复杂、长寿命的中高档塑料模具每年仍需大量进口。在总量供不应求的同时,一些低挡塑料模具却供过于求,市场竞争激烈,还有一些技术含量不太高的中高档塑料模具也有供过于求的趋势。

1.2 国内外模具的相关情况

   外塑料发展已经有一百多年的历史了,伦敦科学博物馆纪念塑料合成问世百年的展览取名为“可塑性”。早在1926年3月,美国塑料杂志对塑料也有这样的定义:一种物质的性质,使他成为任何想要的形状,而不像非塑料物质那样需要切凿。目前,国外在塑料以及模具方面有了以下几个注重:(1)重于塑料的改性。(2)增强高分子的性能。(3)多种以上原材料合金。在21世纪,国外塑料的领域也是十分广泛:汽车工业,机械工业,电子电器工业,塑料包装工业,航空航天工业,建材工业,农业等。

   20世纪 80年代开始,发达工业国家的模具工业已从机床工业中分离出来,并发展成为独立的工业部门,其产值已超过机床工业的产值。改革开放以来,我国的模具工业发展也十分迅速。近年来,每年都以15%的增长速度快速发展。许多模具企业十分重视技术发展。 加大了用于技术进步的投入力度, 将技术进步作为企业发展的重要动力。 此外,许多科研机构和大专院校也开展了模具技术的研究与开发。 模具行业的快速发展是使我国成为世界超级制造大国的重要原因。塑料机械工业的发展趋势与其他工业基本相同,今后主要朝着精密,高质,高性能,节材,低噪与可持续发展的方向发展。其发展的核心和本质上精密技术和高深技术的发展,它的发展驱动力是国民经济对塑料制品在产量上,质量上合品质上的增长需求。产品与技术的发展趋势主要有微型化与大型规格装备的开发,个性化与规模经营的相辅相成,自动化与智能化。


内容简介:
1 Shiou FJ, Chen CH (2003) Determination of optimal ball-burnishing parameters for plastic injection molding steel. Int J Adv Manuf Techno Chao-Chang A. Chen Wen-Tu L Based on the injection mold steel grinding and Based on the injection mold steel grinding and polishing processes automated surfacepolishing processes automated surface treatmenttreatment 1 Introduction Plastics are important engineering materials due to their specific characteristics, such as corrosion resistance, resistance to chemicals, low density, and ease of manufacture, and have increasingly replaced metallic components in industrial applications. Injection molding is one of the important forming processes for plastic products. The surface finish quality of the plastic injection mold is an essential requirement due to its direct effects on the appearance of the plastic product. Finishing processes such as grinding, polishing and lapping are commonly used to improve the surface finish. The mounted grinding tools (wheels) have been widely used in conventional mold and die finishing industries. The 2 geometric model of mounted grinding tools for automated surface finishing processes was introduced in. A finishing process mode of spherical grinding tools for automated surface finishing systems was developed in. Grinding speed, depth of cut, feed rate, and wheel properties such as abrasive material and abrasive grain size, are the dominant parameters for the spherical grinding process, as shown in Fig. 1. The optimal spherical grinding parameters for the injection mold steel have not yet been investigated based in the literature. Fig.1. Schematic diagram of the spherical grinding process In recent years, some research has been carried out in determining the optimal parameters of the ball burnishing process (Fig. 2). For instance, it has been found that plastic deformation on the workpiece surface can be reduced by using a tungsten carbide ball or a roller, thus improving the surface roughness, surface hardness, and fatigue resistance. The burnishing process is accomplished by machining centers and lathes. The main burnishing parameters having significant effects on the surface 3 roughness are ball or roller material, burnishing force, feed rate, burnishing speed, lubrication, and number of burnishing passes, among others. The optimal surface burnishing parameters for the plastic injection mold steel PDS5 were a combination of grease lubricant, the tungsten carbide ball, a burnishing speed of 200 mm/min, a burnishing force of 300 N, and a feed of 40 m. The depth of penetration of the burnished surface using the optimal ball burnishing parameters was about 2.5 microns. The improvement of the surface roughness through burnishing process generally ranged between 40% and 90%. Fig. 2. Schematic diagram of the ball-burnishing process The aim of this study was to develop spherical grinding and ball burnishing surface finish processes of a freeform surface plastic injection mold on a machining center. The flowchart of automated surface finish using spherical grinding and ball burnishing processes is shown in Fig. 3. We began by designing and manufacturing the spherical grinding tool and its alignment device for use on a machining center. The optimal surface spherical grinding parameters were determined by utilizing a Taguchis orthogonal array method. Four factors and three corresponding levels were then chosen for the Taguchis L18 4 matrix experiment. The optimal mounted spherical grinding parameters for surface grinding were then applied to the surface finish of a freeform surface carrier. To improve the surface roughness, the ground surface was further burnished, using the optimal ball burnishing parameters. Fig. 3. Flow chart of automated surface finish using spherical grinding and ball burnishing processes 2 Design of the spherical grinding tool and its alignment device To carry out the possible spherical grinding process of a 5 freeform surface, the center of the ball grinder should coincide with the z-axis of the machining center. The mounted spherical grinding tool and its adjustment device was designed, as shown in Fig. 4. The electric grinder was mounted in a tool holder with two adjustable pivot screws. The center of the grinder ball was well aligned with the help of the conic groove of the alignment components. Having aligned the grinder ball, two adjustable pivot screws were tightened; after which, the alignment components could be removed. The deviation between the center coordinates of the ball grinder and that of the shank was about 5 m, which was measured by a CNC coordinate measuring machine. The force induced by the vibration of the machine bed is absorbed by a helical spring. The manufactured spherical grinding tool and ball-burnishing tool were mounted, as shown in Fig. 5. The spindle was locked for both the spherical grinding process and the ball burnishing process by a spindle-locking mechanism. Fig.4. Schematic illustration of the spherical grinding tool and its adjustment device 6 Fig.5. (a) Photo of the spherical grinding tool (b) Photo of the ball burnishing tool 3 Planning of the matrix experiment 3.1 Configuration of Taguchis orthogonal array The effects of several parameters can be determined efficiently by conducting matrix experiments using Taguchis orthogonal array. To match the aforementioned spherical grinding parameters, the abrasive material of the grinder ball (with the diameter of 10 mm), the feed rate, the depth of grinding, and the revolution of the electric grinder were selected as the four experimental factors (parameters) and designated as factor A to D (see Table 1) in this research. Three levels (settings) for each factor were configured to cover the range of interest, and were identified by the digits 1, 2, and 3. Three types of abrasive materials, namely silicon carbide (SiC), white aluminum oxide (Al2O3, WA), and pink aluminum oxide (Al2O3, PA), were selected and studied. Three numerical values of each factor were determined based on the pre-study results. The L18 orthogonal array was selected to conduct the matrix experiment for four 3-level factors of the spherical grinding process. 7 Table1. The experimental factors and their levels 3.2 Definition of the data analysis Engineering design problems can be divided into smaller-the better types, nominal-the-best types, larger-the-better types, signed-target types, among others 8. The signal-to-noise (S/N) ratio is used as the objective function for optimizing a product or process design. The surface roughness value of the ground surface via an adequate combination of grinding parameters should be smaller than that of the original surface. Consequently, the spherical grinding process is an example of a smaller-the-better type problem. The S/N ratio, , is defined by the following equation: =10 log10(mean square quality characteristic) =10 log10niiyn121 where: yi : observations of the quality characteristic under different noise conditions n: number of experiment After the S/N ratio from the experimental data of each L18 orthogonal array is calculated, the main effect of each factor was determined by using an analysis of variance (ANOVA) technique and an F-ratio test. The optimization strategy of the smaller-the better problem is to maximize , as defined by Eq. 1. Levels that maximize will be selected for the factors that have a significant effect on . The optimal conditions for spherical grinding can then be determined. 4 Experimental work and results The material used in this study was PDS5 tool steel (equivalent to AISI P20), which is commonly used for the molds of large plastic injection products in the field of automobile components and domestic 8 appliances. The hardness of this material is about HRC33 (HS46). One specific advantage of this material is that after machining, the mold can be directly used for further finishing processes without heat treatment due to its special pre-treatment. The specimens were designed and manufactured so that they could be mounted on a dynamometer to measure the reaction force. The PDS5 specimen was roughly machined and then mounted on the dynamometer to carry out the fine milling on a three-axis machining center made by Yang-Iron Company (type MV-3A), equipped with a FUNUC Company NC-controller (type 0M). The pre-machined surface roughness was measured, using Hommelwerke T4000 equipment, to be about 1.6 m. Figure 6 shows the experimental set-up of the spherical grinding process. A MP10 touch-trigger probe made by the Renishaw Company was also integrated with the machining center tool magazine to measure and determine the coordinated origin of the specimen to be ground. The NC codes needed for the ball-burnishing path were generated by PowerMILL CAM software. These codes can be transmitted to the CNC controller of the machining center via RS232 serial interface. Fig.6. Experimental set-up to determine the optimal spherical grinding parameters Table 2 summarizes the measured ground surface roughness 9 alue Ra and the calculated S/N ratio of each L18 orthogonal array sing Eq. 1, after having executed the 18 matrix experiments. The average S/N ratio for each level of the four actors is shown graphically in Fig. 7. Table2. Ground surface roughness of PDS5 specimen Exp. Inner array (control factors) Measured surface roughness value (Ra) Response no A B C D my1 my2 my3 S/N(dB) Mean my_ 1 1 1 1 1 0.35 0.35 0.35 9.119 0.350 2 1 2 2 2 0.37 0.36 0.38 8.634 0.370 3 1 3 3 3 0.41 0.44 0.40 7.597 0.417 4 2 1 2 3 0.63 0.65 0.64 3.876 0.640 5 2 2 3 1 0.73 0.77 0.78 2.380 0.760 6 2 3 1 2 0.45 0.42 0.39 7.530 0.420 7 3 1 3 2 0.34 0.31 0.32 9.801 0.323 8 3 2 1 3 0.27 0.25 0.28 11.471 0.267 9 3 3 2 1 0.32 0.32 0.32 9.897 0.320 10 1 1 2 2 0.35 0.39 0.40 8.390 0.380 11 1 2 3 3 0.41 0.50 0.43 6.968 0.447 12 1 3 1 1 0.40 0.39 0.42 7.883 0.403 13 2 1 1 3 0.33 0.34 0.31 9.712 0.327 14 2 2 2 1 0.48 0.50 0.47 6.312 0.483 15 2 3 3 2 0.57 0.61 0.53 4.868 0.570 16 3 1 3 1 0.59 0.55 0.54 5.030 0.560 17 3 2 1 2 0.36 0.36 0.35 8.954 0.357 18 3 3 2 3 0.57 0.53 0.53 5.293 0.543 Fig.7. Plots of control factor effects The goal in the spherical grinding process is to minimize the surface roughness value of the ground specimen by determining the optimal level of each factor. Since log is a monotone decreasing function, we should maximize the S/N ratio. Consequently, we can determine the optimal level for each factor as being the level that has the highest value of . Therefore, based on the matrix experiment, the optimal abrasive material was pink aluminum oxide; the optimal feed was 50 mm/min; the optimal depth of grinding was 20 m; and the optimal revolution was 18 000 rpm, as shown in Table 3. The optimal parameters for surface spherical grinding obtained from the Taguchis matrix experiments were applied to the surface finish of the freeform surface mold insert to evaluate the surface roughness improvement. A perfume bottle was selected as the 10 tested carrier. The CNC machining of the mold insert for the tested object was simulated with Power MILL CAM software. After fine milling, the mold insert was further ground with the optimal spherical grinding parameters obtained from the Taguchis matrix experiment. Shortly afterwards, the ground surface was burnished with the optimal ball burnishing parameters to further improve the surface roughness of the tested object (see Fig. 8). The surface roughness of the mold insert was measured with Hommelwerke T4000 equipment. The average surface roughness value Ra on a fine-milled surface of the mold insert was 2.15 m on average; that on the ground surface was 0.45 m on average; and that on burnished surface was 0.07 m on average. The surface roughness improvement of the tested object on ground surface was about (2.150.45)/2.15 = 79.1%, and that on the burnished surface was about (2.150.07)/2.15 = 96.7%. Fig.8. Fine-milled, ground and burnished mold insert of a perfume bottle 5 Conclusion In this work, the optimal parameters of automated spherical grinding and ball-burnishing surface finishing processes in a freeform surface plastic injection mold were developed successfully on a machining center. The mounted spherical grinding tool (and its alignment components) was designed and manufactured. The optimal 11 spherical grinding parameters for surface grinding were determined by conducting a Taguchi L18 matrix experiments. The optimal spherical grinding parameters for the plastic injection mold steel PDS5 were the combination of the abrasive material of pink aluminum oxide (Al2O3, PA), a feed of 50 mm/min, a depth of grinding 20 m, and a revolution of 18 000 rpm. The surface roughness Ra of the specimen can be improved from about 1.6 m to 0.35 m by using the optimal spherical grinding conditions for surface grinding. By applying the optimal surface grinding and burnishing parameters to the surface finish of the freeform surface mold insert, the surface roughness improvements were measured to be ground surface was about 79.1% in terms of ground surfaces, and about 96.7% in terms of burnished surfaces. Acknowledgement The authors are grateful to the National Science Council of the Republic of China for supporting this research with grant NSC 89-2212-E-011-059. 毕业设计(论文)开题报告题目:遥控器盒盖塑料模具设计 系 (部): 机电信息系 专 业: 机械设计制造及其自动化 班 级: 学 生: 学 号: 指导教师: 2012年12月22日1. 毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况)11课题名称遥控器盒盖塑料模具设计1.2课题研究背景塑料是20世纪人类的重大发明,它的发明和广泛使用,在信息工业,通讯工业,航空业,兵器业,船舶业,医学领域中已成为重要材料,并发挥着越来越重要的作用。为人类的物质文明谱写了新的篇章,大大推动了人类社会的进步和繁荣。 塑料材料和塑料制品已经成为人类生活中不可缺少的原材料和用品。随着科学技术的发展,塑料成型方法不断改革和完善,对塑料工业的发展提供了强大的支持,也为现代工业提供了更多的选择空间。模具制造业是我国国民经济基础,也是关键工业。承担了工业中60%-90%的工业零件,组件和部件的工业加工。 1.3 课题研究的意义 塑料是一种天然合成或者用天然材料改性而得到的,以高分子化合物为基体的固体材料。我国处于经济建设快速发展时期,塑料模具表面光滑,耐水性好,可塑性强,操作简单,模具可以反复使用。而遥控器在人们的生活中已经随处可见,所以完善遥控器的设计是时不我待的,美观,简洁,方便,环保已经是现代的时尚,抽拉式遥控器盒盖也将成为一个大市场,在我国相关政策的引导下,塑料模具行业也会得到更大的发展。 1.4模具工业在国民经济中的地位 塑料制品是近年来在我国飞速发展的一类加工材料,广泛运用于国民经济的各个领域,模具是制造业的一种基本工艺装备, 它的作用是控制和限制材料 (固态或液态)的流动,使之形成所需要的形体。用模具制造零件以 其效率高,产品质量好,材料消耗低,生产成本低而广泛应用于制造 业中。 模具工业是国民经济的基础工业,是国际上公认的关键工业。模 具生产技术水平的高低是衡量一个国家产品制造水平高低的重要标 志,它在很大程度上决定着产品的质量,效益和新产品的开发能力。 振兴和发展我国的模具工业,正日益受到人们的关注。 、 模具工业既是高新技术产业的一个组成部分, 又是高新技术产业 化的重要领域。模具在机械,电子,轻工,汽车,纺织,航空,航天 等工业领域里,日益成为使用最广泛的主要工艺装备。目前世界模具市场供不应求,模具的主要出口国是美国,日本,法国,瑞士等国家。中国模具出口数量极少,但中国模具钳工技术水 平高,劳动成本低,只要配备一些先进的数控制模设备,提高模具加 工质量,缩短生产周期,沟通外贸渠道,模具出口将会有很大发展。 研究和发展模具技术,提高模具技术水平,对于促进国民经济的发展 有着特别重要的意义。 1.5各种模具的分类和占有量 模具主要类型有:冲模,锻摸,塑料模,压铸模,粉末冶金模, 玻璃模,橡胶模,陶瓷模等。除部分冲模以外的的上述各种模具都属 于腔型模,因为他们一般都是依靠三维的模具形腔使材料成型。 (1) 冲模:冲模是对金属板材进行冲压加工获得合格产品的工具。冲 模占模具总数的 50以上。按工艺性质的不同,冲模可分为落料模, 冲孔模,切口模,切边模,弯曲模,卷边模,拉深模,校平模,翻孔 模,翻边模,缩口模,压印模,胀形模。按组合工序不同,冲模分为 单工序模,复合模,连续模。 (2) 锻模: 锻模是金属在热态或冷态下进行体积成型时所用模具的总 称。按锻压设备不同,锻模分为锤用锻模,螺旋压力机锻模,热模锻 压力锻模,平锻机用锻模,水压机用锻模,高速锤用锻模,摆动碾压 机用锻模,辊锻机用锻模,楔横轧机用锻模等。按工艺用途不同,锻 模可分为预锻模具, 挤压模具, 精锻模具, 等温模具, 超塑性模具等。 (3) 塑料模:塑料模是塑料成型的工艺装备。塑料模约占模具总数的 35,而且有继续上升的趋势。塑料模主要包括压塑模,挤塑模,注 射模,此外还有挤出成型模,泡沫塑料的发泡成型模,低发泡注射成型模,吹塑模等。 (4) 压铸模:压铸模是压力铸造工艺装备,压力铸造是使液态金属在 高温和高速下充填铸型,在高压下成型和结晶的一种特殊制造方法。 压铸模约占模具总数的 6。 (5) 粉末冶金模:粉末冶金模用于粉末成型,按成型工艺分类粉末冶 金模有:压模,精整模,复压模,热压模,粉浆浇注模,松装烧结模 等。 模具所涉及的工艺繁多,包括机械设计制造,塑料,橡胶加工,金属 材料,铸造(凝固理论) ,塑性加工,玻璃等诸多学科和行业,是一 个多学科的综合,其复杂程度显而易见。 1.6我国模具技术的现状及发展趋势 20 世纪 80 年代开始,发达工业国家的模具工业已从机床工业中分离出来,并发展成为独立的工业部门,其产值已超过机床工业的产值。改革开放以来,我国的模具工业发展也十分迅速。近年来,每年都以15的增长速度快速发展。许多模具企业十分重视技术发展。 加大了用于技术进步的投入力度, 将技术进步作为企业发展的重要动力。 此外,许多科研机构和大专院校也开展了模具技术的研究与开发。 模具行业的快速发展是使我国成为世界超级制造大国的重要原因。塑料机械工业的发展趋势与其他工业基本相同,今后主要朝着精密,高质,高性能,节材,低噪与可持续发展的方向发展。其发展的核心和本质上精密技术和高深技术的发展,它的发展驱动力是国民经济对塑料制品在产量上,质量上合品质上的增长需求。产品与技术的发展趋势主要有微型化与大型规格装备的开发,个性化与规模经营的相辅相成,自动化与智能化。1.7 国外模具的发展 国外塑料发展已经有一百多年的历史了,伦敦科学博物馆纪念塑料合成问世百年的展览取名为“可塑性”。早在1926年3月,美国塑料杂志对塑料也有这样的定义:一种物质的性质,使他成为任何想要的形状,而不像非塑料物质那样需要切凿。目前,国外在塑料以及模具方面有了以下几个注重:1,重于塑料的改性。2,增强高分子的性能。3,多种以上原材料合金。在21世纪,国外塑料的领域也是十分广泛:汽车工业,机械工业,电子电器工业,塑料包装工业,航空航天工业,建材工业,农业等。2. 本课题研究的主要内容和拟采用的研究方案、研究方法或措施1.主要内容:塑件测绘图、模具装配图、模具零件图、说明书。本设计的基本要求如下: (1) 不少于3000字的文献综述; (2) 充分了解塑件结构,绘制2维图、3D图,并完成基本参数的计算及注射机的选用; (3) 确定模具类型及结构,完成模具的结构草图的绘制; (4) 运用Pro/E或AutoCAD等工具软件辅助设计完成模具整体结构 ; (5) 对模具工作部分尺寸及公差进行设计计算; (6) 对模具典型零件需进行选材及热处理工艺路线分析; (7) 编制模具中典型零件的制造工艺规程卡片; (8) 对设计方案和设计结果进行经济分析和环保分析; (9) 绘制模具零件图及装配图; (10) 对模具结构进行三维剖析,输出模具开合结构图; (11)编写设计说明书(所有3D图插入说明书中恰当位置)。2拟定方案:(1)课题名称:遥控器盒盖塑料模具设计(2)材料选择:ABS(3)生产批量:大批量(4)精度要求:中 (5)塑料等级:4级 方案一:遥控器盒盖的下端面为分型面,采用整体式的直浇道,侧浇口,浇口设在零件的侧面上,手动推出机构脱模,用手动侧向分型方式抽芯。此方案的优点是制造方便,但操作麻烦,生产率低,劳动强度大。方案二:遥控器盒盖的上端面为分型面,采用整体式的
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:遥控器盒盖的塑料模具设计[三维PROE]【21张CAD图纸+WORD毕业论文】【注塑模具类】
链接地址:https://www.renrendoc.com/p-438603.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!