




免费预览已结束,剩余10页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省德州市德城区2013年初中学业水平考试第二次数学练兵考试试题一、选择题(本大题共12题,每小题3分,共36分)在每小题列出的四个选项中,只有一个是正确的,请将正确选项的字母写在答卷相应的位置上1(3分)(2013德城区二模)下列各式:(2);|2|;22;(2)2,计算结果为负数的个数有()a4个b3个c2个d1个考点:有理数的乘方分析:根据相反数、绝对值的意义及乘方运算法则,先化简各数,再由负数的定义判断即可解答:解:(2)=2,|2|=2,22=4,(2)2=4,所以负数有三个故选b点评:本题主要考查了相反数、绝对值、负数的定义及乘方运算法则2(3分)(2008淮安)下列计算正确的是()aa2+a2=a4ba5a2=a7c(a2)3=a5d2a2a2=2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法分析:根据合并同类项的法则,同底数幂的乘法,幂的乘方的性质,对各选项分析判断后利用排除法求解解答:解:a、a2+a2=2a2,故本选项错误;b、a5a2=a5+2=a7,正确;c、(a2)3=a23=a6,故本选项错误;d、2a2a2=(21)a2=a2,故本选项错误故选b点评:本题主要考查合并同类项法则、同底数幂的乘法的性质、幂的乘方的性质,熟练掌握法则和性质是解题的关键3(3分)(2013德城区二模)下列标志中,既是轴对称图形又是中心对称图形的为()abcd考点:中心对称图形;轴对称图形;生活中的旋转现象分析:根据轴对称图形与中心对称图形的概念求解解答:解:a、不是轴对称图形,也不是中心对称图形故错误;b、不是轴对称图形,也不是中心对称图形故错误;c、不是轴对称图形,是中心对称图形故错误;d、是轴对称图形,也是中心对称图形故正确故选d点评:掌握中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合4(3分)(2009鄂尔多斯)已知是方程2xay=3的一个解,那么a的值是()a1b3c3d1考点:二元一次方程的解分析:把x、y的值代入方程即可求出a的值解答:解:把代入,得2+a=3,解得a=1故选a点评:本题主要用到了代入法5(3分)(2012山西)在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,在随机摸出一个球,两次都摸到黑球的概率是()abcd考点:列表法与树状图法分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案注意此题属于放回实验解答:解:画树状图得:共有4种等可能的结果,两次都摸到黑球的只有1种情况,两次都摸到黑球的概率是故选a点评:此题考查的是用列表法或树状图法求概率的知识注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验6(3分)(2013德城区二模)将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()a10cmb30cmc45cmd300cm考点:圆锥的计算分析:根据已知得出直径为60cm的圆形铁皮,被分成三个圆心角是120,半径为30的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案解答:解:根据将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),直径为60cm的圆形铁皮,被分成三个圆心角是120,半径为30的扇形,假设每个圆锥容器的底面半径为r,=2r,解得:r=10(cm)故选a点评:此题主要考查了圆锥的有关计算,得出扇形弧长等于圆锥底面圆的周长是解决问题的关键7(3分)(2013德城区二模)二次函数y1=ax2x+1的图象与y2=2x2图象的形状,开口方向相同,只是位置不同,则二次函数y1的顶点坐标是()a(,)b(,)c(,)d(,)考点:二次函数的性质分析:因为图象的形状,开口方向相同,所以a=2利用公式法y=ax2+bx+c的顶点坐标公式即可求解答:解:根据题意可知,a=2,又=,=,顶点坐标为(,)故选b点评:此题考查了二次函数的性质8(3分)(2013德城区二模)当k0,b0时,y=kx+b的图象经过()a第1、2、3象限b第2、3、4象限c第1、2、4象限d第1、3、4象限考点:一次函数图象与系数的关系分析:根据k,b的取值范围来确定一次函数图象在坐标平面内的位置解答:解:k0,y=kx+b的图象经过第一、三象限;又b0,y=kx+b的图象与y轴交与负半轴,y=kx+b的图象经过第一、三、四象限故选d点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系k0时,直线必经过一、三象限k0时,直线必经过二、四象限b0时,直线与y轴正半轴相交b=0时,直线过原点;b0时,直线与y轴负半轴相交9(3分)(2013德城区二模)如图,pa切o于点a,直线pbc经过点圆心o,若p=30,则acb的度数为()a30b60c90d120考点:切线的性质分析:如图,连接oa,ac利用切线的性质推知abo是直角三角形,则aop=60;然后根据圆周角定理求得acb=aob解答:解:如图,连接oa,acpa切o于点a,直线pbc经过点圆心o,oapa,即pao=90又p=30,aop=60,acb=aob=30故选a点评:本题考查了切线的性质运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题10(3分)(2013德城区二模)对角线相等且互相垂直平分的四边形是()a矩形b菱形c正方形d等腰梯形考点:正方形的判定分析:根据矩形、菱形、正方形和等腰梯形的判定,对选项一一分析,排除错误答案解答:解:a、对角线相等的平行四边形是矩形,故错误;b、对角线互相垂直平分的四边形是菱形,故错误;c、对角线互相垂直平分且相等的四边形是正方形,故正确;d、对角线相等的梯形是等腰梯形,故错误故选c点评:考查矩形、菱形、正方形和等腰梯形的判定方法解题的关键是熟练掌握运用这些判定方法11(3分)(2013德城区二模)某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()a=20b=20c=0.5d=0.5考点:由实际问题抽象出分式方程分析:设原价每瓶x元,根据某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,可列方程解答:解:设原价每瓶x元,=20故选b点评:本题考查理解题意的能力,关键是设出价格,以瓶数做为等量关系列方程求解12(3分)(2009武汉)在直角梯形abcd中,adbc,abc=90,ab=bc,e为ab边上一点,bce=15,且ae=ad连接de交对角线ac于h,连接bh下列结论:acdace;cde为等边三角形;=2;其中结论正确的是()a只有b只有c只有d考点:全等三角形的判定;等边三角形的判定;直角梯形专题:压轴题分析:根据题意,对选项进行一一论证,排除错误答案解答:解:由题意可知acd和ace全等,故正确;又因为bce=15,所以ace=4515=30,所以ecd=60,所以cde是等边三角形,故正确;ae=ae,acdace,cde是等边三角形,eah=adh=45,ad=ae,ah=eh=dh,ahde,假设ah=eh=dh=x,ae=x,ce=2x,ch=x,ac=(1+)x,ab=bc,ab2+bc2=(1+)x2,解得:ab=x,be=x,=,故错误;rtebc与rtehc共斜边ec,sebc:sehc=(bebc):(hehc)=(ecsin15eccos15):(ecsin30eccos30)=(ecsin30):(ecsin60)=eh:ch=ah:ch,故正确故其中结论正确的是故选b点评:本题综合考查全等三角形、等边三角形和四边形的有关知识注意对三角形全等,相似的综合应用二、填空题:本大题共5小题,共32分,只要求填写最后结果,每小题填对得4分13(4分)(2010南平)分解因式:a32a2+a=a(a1)2考点:提公因式法与公式法的综合运用分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解解答:解:a32a2+a=a(a22a+1)=a(a1)2故答案为:a(a1)2点评:本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解14(4分)(2013德城区二模)关于x的一元二次方程(m1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是m2且m1考点:根的判别式分析:在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足=b24ac0解答:解:根据题意,列出不等式组,解得m2且m1点评:本题考查了一元二次方程根的判别式的应用切记不要忽略一元二次方程二次项系数不为零这一隐含条件15(4分)(2013德城区二模)如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是6厘米考点:勾股定理的应用分析:根据最长4cm,可得筷子长为12cm那么可得ac长,那么利用勾股定理可得内径解答:解:根据条件可得筷子长为12厘米如图ac=10厘米,bc=厘米点评:主要考查学生对解直角三角形的应用的掌握情况16(4分)(2013德城区二模)不等式组的整数解共有5个考点:一元一次不等式组的整数解分析:首先确定不等式组的解集,然后在解集范围内找出符合条件的整数解有几个解答:解:由得x2,由得x3,解集为2x3,所以整数解为2,1,0,1,2,共5个点评:注意各个不等式的解集的公式部分就是这个不等式组的解集但本题是要求整数解的,所以要找出在这范围内的整数17(4分)(2013德城区二模)如图,将边长为8cm的正方形纸片abcd折叠,使点d落在bc边中点e处,点a落在点f处,折痕为mn,则线段cn的长度为3cm考点:翻折变换(折叠问题)专题:数形结合分析:根据折叠的性质,只要求出dn就可以求出ne,在直角cen中,若设cn=x,则dn=ne=8x,ce=4cm,根据勾股定理就可以列出方程,从而解出cn的长解答:解:由题意设cn=x cm,则en=(8x)cm,又ce=dc=4cm,在rtecn中,en2=ec2+cn2,即(8x)2=42+x2,解得:x=3,即cn=3cm故答案为:3cm点评:本题考查翻折变换的问题,折叠问题其实质是轴对称,对应线段相等,对应角相等,找到相应的直角三角形利用勾股定理求解是解决本题的关键三、解答题:本大题共7个小题,共64分解答要写出必要的文字说明、证明过程或演算步骤18(6分)(2013德城区二模)解方程:考点:解分式方程专题:计算题分析:本题的最简公分母是(x2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解解答:解:方程两边同乘(x2)得:x2(x2)=3(x+2),解得:x=5,检验:当x=5时,x20,原方程的解为x=5点评:解分式方程主要步骤是把分式转化成整式,解答之后要验根19(8分)(2013德城区二模)如图,在abc中,bcac,点d在bc上,且dc=ac(1)利用直尺与圆规先作acb的平分线,交ad于f点,再作线段ab的垂直平分线,交ab于点e,最后连接ef(2)若线段bd的长为6,求线段ef的长考点:三角形中位线定理;角平分线的性质;线段垂直平分线的性质;作图基本作图专题:计算题;作图题分析:(1)用圆规在角的两边上分别截取相等的线段,以交点为圆心,大于两交点之间的距离的一半为半径画弧交于一点,连接顶点及交点即可得到角的平分线(2)连接ce,根据三角形中位线定理及角平分线的性质可以判定ef是三角形的中位线,从而求出中位线的长解答:解:(1)所作图形如下:(2)cf平分acbacf=bcf又dc=accf是acd的中线点f是ad的中点点e是ab的垂直平分线与ab的交点点e是ab的中点ef是abd中位线ef=bd=3点评:本题考查了三角形的中位线的定理及尺规作图的应用,解题的关键是正确的判定中位线20(8分)(2010日照)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间1小时的扇形圆心角的度数;(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?考点:频数(率)分布直方图;扇形统计图;中位数;众数专题:图表型分析:(1)由总数=某组频数频率计算;(2)户外活动时间为1.5小时的人数=总数24%;(3)扇形圆心角的度数=360比例;(4)计算出平均时间后分析解答:解:(1)调查人数=1020%=50(人);(2)户外活动时间为1.5小时的人数=5024%=12(人);补全频数分布直方图;(3)表示户外活动时间1小时的扇形圆心角的度数=360=144;(4)户外活动的平均时间=(小时),1.181,平均活动时间符合上级要求;户外活动时间的众数和中位数均为1小时点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题21(10分)(2013德城区二模)如图,已知ab是o的直径,点c在o上,过点c的直线与ab的延长线交于点p,ac=pc,cob=2pcb(1)求证:pc是o的切线;(2)求证:bc=ab考点:切线的判定与性质;含30度角的直角三角形;圆周角定理分析:(1)欲证pc是o的切线,直线证明ocpc即可;(2)利用“直角acb的斜边上的中线等于斜边的一半”推知oc=ab;然后根据等腰apc的性质,三角形外角的性质证得oc=bc,则bc=ab解答:证明:(1)oa=oc,a=oca又cob为aoc的外角,cob=2oca,又cob=2pcb,oca=pcb,ab是o直径,acb=90,oca+ocb=90,pcb+ocb=90,pco=90,点c在o上,pc是o的切线;(2)ab是o的直径,acb=90又点o是斜边ab的中点,oc=abac=pc,a=p又由(1)知,oca=pcb,cob=obc,oc=bc=ab,即bc=ab点评:此题考查了切线的判定,等腰三角形的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外角性质,利用了转化及等量代换的思想,其中切线的判定方法有两种:有点连接证明垂直;无点作垂线证明垂线段等于半径22(10分)(2013德城区二模)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作已知该水果的进价为8元/千克,下面是他们在活动结束后的对话小丽:如果以10元/千克的价格销售,那么每天可售出300千克小强:如果每千克的利润为3元,那么每天可售出250千克小红:如果以13元/千克的价格销售,那么每天可获取利润750元【利润=(销售价进价)销售量】(1)请根据他们的对话填写下表:销售单价x(元/kg)101113销售量y(kg)300250150(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系并求y(千克)与x(元)(x0)的函数关系式;(3)设该超市销售这种水果每天获取的利润为w元,求w与x的函数关系式当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?考点:二次函数的应用;一次函数的应用专题:应用题分析:(1)根据题意得到每涨一元就少50千克,则以13元/千克的价格销售,那么每天售出150千克;(2)先判断y是x的一次函数利用待定系数法求解析式,设y=kx+b,把x=10,y=300;x=11,y=250代入即可得到y(千克)与x(元)(x0)的函数关系式;(2)根据每天获取的利润=每千克的利润每天的销售量得到w=(x8)y=(x8)(50x+800),然后配成顶点式得y=50(x12)2+800,最后根据二次函数的最值问题进行回答即可解答:解:(1)以11元/千克的价格销售,可售出250千克,每涨一元就少50千克,以13元/千克的价格销售,那么每天售出150千克故答案为300,250,150;(2)y是x的一次函数设y=kx+b,x=10,y=300;x=11,y=250,解得,y=50x+800,经检验:x=13,y=150也适合上述关系式,y=50x+800(3)w=(x8)y=(x8)(50x+800)=50x2+1200x6400=50(x12)2+800,a=500,当x=12时,w的最大值为800,即当销售单价为12元时,每天可获得的利润最大,最大利润是800元点评:本题考查了二次函数的应用:先得到二次函数的顶点式y=a(xh)2+k,当a0,x=h时,y有最大值k;当a0,x=h时,y有最小值k也考查了利用待定系数法求函数的解析式23(10分)(2013德城区二模)阅读材料:如图,abc中,ab=ac,p为底边bc上任意一点,点p到两腰的距离分别为r1,r2,腰上的高为h,连接ap,则sabp+sacp=sabc,即:abr1+acr2=abh,r1+r2=h(1)理解与应用如果把“等腰三角形”改成“等边三角形”,那么p的位置可以由“在底边上任一点”放宽为“在 三角形内任一点”,即:已知边长为2的等边abc内任意一点p到各边的距离分别为r1,r2,r3,试证明:(2)类比与推理边长为2的正方形内任意一点到各边的距离的和等于4;(3)拓展与延伸若边长为2的正n边形a1a2an内部任意一点p到各边的距离为r1,r2,rn,请问r1+r2+rn是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值考点:正多边形和圆;等腰三角形的性质;等边三角形的性质;正方形的性质专题:压轴题;探究型分析:(1)由条件可以求出边长为2的等边三角形的高为,连接pa,pb,pc,仿照面积的割补法,得出spbc+spac+spab=sabc,而这几个三角形的底相等,故化简后可得出高的关系(2)如图正方形过正方形内的任一点p向四边做垂线就可以求出到正方形四边的距离和为正方形边长的2倍,从而得出结论(3)问题转化为正n边形时,根据正n边形计算面积的方法,从中心向各顶点连线,可得出n个全等的等腰三角形,用边长2为底,边心距为高,可求正n边形的面积,然后由p点向正n多边形,又可把正n边形分割成n个三角形,以边长为底,以r1、r2、rn为高表示面积,列出面积的等式,可求证r1+r2+rn为定值解答:解:(1)分别连接ap,bp,cp,作adbc于d,adb=90,abc是等边三角形,ab=bc=ac=2,abc=60,bad=30,bd=1,在rtabd中,由勾股定理,得ad=sabp+sbcp+sacp=sabcabr1+bcr2+acr3=bcad,bc=ac=ab,r1+r2+r3=adr1+r2+r3=(2)如图2,四边形abcd是正方形,a=b=c=d=90,ab=bc=cd=ad=2peab,pfbc,pgdc,phad,四边形pebf是矩形,四边形pfcg是矩形,四边形pgdh是矩形,四边形phae是矩形,pe=ah,pf=be,pg=hd,ph=ae,pe+pf+pg+ph=ah+be+hd+ae=ad+ab=4故答案为4(3)设正n边形的边心距为r,且正n边形的边长为2,s正n边形=r=,s正n边形=2r1+2r2+2r1+2rn,2r1+2r2+2r1+2rn=n,r1+r2+rn=nr=(为定值)点评:本题主要考查了等腰三角形的性质,等边三角形的性质,正方形的性质及利用面积分割法,求线段之间的关系,充分体现了面积法解题的作用24(12分)(2009钦州)如图,已知抛物线y=x2+bx+c与坐标轴交于a、b、c三点,a点的坐标为(1,0),过点c的直线y=x3与x轴交于点q,点p是线段bc上的一个动点,过p作phob于点h若pb=5t,且0t1(1)填空:点c的坐标是,b=,c=;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六年级上册数学竞赛试题-计算综合习题(含答案)
- 桉树生长模式及种植抚育管理措施参考分析
- 设计师职业生涯规划指南-1
- 下沉市场消费金融行业监管政策解读与合规建议研究报告
- 2025年宠物用品及服务行业当前发展现状及增长策略研究报告
- 建筑起重机械设备研发制造项目可行性研究报告模板-立项拿地
- 2025年重卡汽车行业当前发展趋势与投资机遇洞察报告
- 中医药健康服务进社区2025年政策解读与实践指导报告
- 2025年微型车行业当前竞争格局与未来发展趋势分析报告
- 2025年风电场行业当前发展现状及增长策略研究报告
- 2025云南红河投资有限公司招聘12人笔试参考题库附带答案详解(10套)
- 测绘生产安全生产管理制度
- 2024-2025学年湖南省新高考教学教研联盟暨长郡二十校联盟高二(下)期末数学试卷(含解析)
- 2025年邵东市招聘社区工作者模拟试卷附答案详解ab卷
- 气候变化与健康宣教课件
- 儿科血小板减少的护理查房
- 新教师教学常规培训
- 林下生态养鸡技术课件
- 商务邮件写作培训
- 临时供货配送方案(3篇)
- 医药公司团建活动方案
评论
0/150
提交评论