22.3实际问题与二次函数——商品利润问题.doc_第1页
22.3实际问题与二次函数——商品利润问题.doc_第2页
22.3实际问题与二次函数——商品利润问题.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22.3实际问题与二次函数商品利润问题教学内容22.3 实际问题与二次函数(2)学情分析学生已经学习了二次函数图像和性质,会用二次函数的顶点求函数的最大值和最小值。教学目标1会求二次函数yax2bxc的最小(大)值2能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题3根据不同条件设自变量x求二次函数的关系式教学重点1根据不同条件设自变量x求二次函数的关系式2求二次函数yax2bxc的最小(大)值教学难点将实际问题转化成二次函数问题教学过程一、导入新课复习利用二次函数解决实际问题的过程导入新课的教学 1. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 。当x= 时,y的最 值是 。 2. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 。当x= 时,函数有最 值,是 。 3.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最 值,二、新课教学问题一(探究2) 问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?教师引导学生阅读问题,理清自变量和变量在这个探究中,某商品调整,销量会随之变化调整的价格包括涨价和降价两种情况分析:没调价之前商场一周的利润为 元设销售单价上调了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程 合作交流 问题2. 已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?问题3. 已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每降价一元,每星期可多卖出20件。如何定价才能使利润最大?问题4. 已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?解:设每件涨价为x元时获得的总利润为y元.y =(60-40+x)(300-10x) (0x30) =(20+x)(300-10x) =-10x2+100x+6000 =-10(x2-10x ) +6000 =-10(x-5)2-25 +6000 =-10(x-5)2+6250当x=5时,y的最大值是6250定价:60+5=65(元)由(1)(2)的讨论及现在的销售状况,你知道应如何定价能使利润最大了吗?学生最后的出答案:综合涨价和降价两种情况及现在的销售状况可知,定价65元时,利润最大三、巩固练习w 1某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元2.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入购进成本)解析:(1)降低x元后,所销售的件数是(500+100x),y=100x2+600x+5500 (0x11 )(2)y=100x2+600x+5500 (0x11 )配方得y=100(x3)2+6400 当x=3时,y的最大值是6400元.即降价为3元时,利润最大.所以销售单价为10.5元时,最大利润为6400元.答:销售单价为10.5元时,最大利润为640

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论