高中数学 第一章 常用逻辑用语 1.2.12 充分条件与必要条件课件2 北师大版选修11.ppt_第1页
高中数学 第一章 常用逻辑用语 1.2.12 充分条件与必要条件课件2 北师大版选修11.ppt_第2页
高中数学 第一章 常用逻辑用语 1.2.12 充分条件与必要条件课件2 北师大版选修11.ppt_第3页
高中数学 第一章 常用逻辑用语 1.2.12 充分条件与必要条件课件2 北师大版选修11.ppt_第4页
高中数学 第一章 常用逻辑用语 1.2.12 充分条件与必要条件课件2 北师大版选修11.ppt_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

充分条件与必要条件 4 如果命题 若p则q 为假 则记作pq 3 若命题 若p则q 为真 记作pq 或qp 2 四种命题及相互关系 1 命题 可以判断真假的陈述句 可写成 若p则q 复习 判断下列命题是真命题还是假命题 1 若 则 2 若 则 3 对角线互相垂直的四边形是菱形 5 若 则 4 若方程有两个不等的实数解 则 真 假 假 假 真 6 若两三角形全等 则两三角形面积相等 真 两三角形全等两三角形面积相等 定义 充分条件与必要条件 一般地 如果已知 即命题 若p则q 为真命题 那么就说 p是q的充分条件 q是p的必要条件 两三角形全等是两三角形面积相等的充分条件 两三角形面积相等是两三角形全等的必要条件 两三角形全等两三角形面积相等 定义 对于命题 若p则q 例1 指出下列各组命题中 p是q的什么条件 q是p的什么条件 例2 以 充分不必要条件 必要不充分条件 充要条件 与 既不充分也不必要条件 中选出适当的一种填空 充分不必要条件 充分不必要条件 必要不充分条件 必要不充分条件 充要条件 充要条件 既不充分也不必要条件 认清条件和结论 可先简化命题 将命题转化为等价的逆否命题后再判断 否定一个命题只要举出一个反例即可 1 判别步骤 b a d b 例7 若p是r的充分不必要条件 r是q的必要条件 r又是s的充要条件 q是s的必要条件 则 1 s是p的什么条件 2 r是q的什么条件 必要不充分条件 充要条件 练习 若a是b的必要而不充分条件 c是b的充要条件 d是c的充分而不必要条件 那么d是a的 充分不必要条件 例8 在下列电路图中 闭合开关a是灯泡b亮的什么条件 如图 1 所示 开关a闭合是灯泡b亮的条件 如图 2 所示 开关a闭合是灯泡b亮的条件 如图 3 所示 开关a闭合是灯泡b亮的条件 如图 4 所示 开关a闭合是灯泡b亮的条件 2 充要条件的证明 注意 分清p与q 从命题角度看 引申 若p则q是真命题 那么p是q的充分条件q是p的必要条件 若p则q是真命题 若q则p为假命题 那么p是q的充分不必要条件 q是p必要不充分条件 四 若p则q 若q则p都是假命题 那么p是q的既不充分也不必要条件 q是p既不充分也不必要条件 三 若p则q 若q则p都是真命题 那么p是q的充要条件 从集合角度看 命题 若p则q 引申 0 x 0 d x 6 x 1 c x 6 x b 1 x a 7 5 2 3 0 4 3 0 4 3 2 1 2 2 2 2 或 或 条件是 成立的一个必要不充分 不等式 的什么条件 是 则 若 的什么条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论