



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2.1 函数的概念(1)学习目标 1. 通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2. 了解构成函数的要素;3. 能够正确使用“区间”的符号表示某些集合.学习过程 一、课前准备(预习教材P15 P17,找出疑惑之处)复习1:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?复习2:(初中对函数的定义)在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变量. 表示方法有:解析法、列表法、图象法.二、新课导学 学习探究探究任务一:函数模型思想及函数概念问题:研究下面三个实例: A. 一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是. B. 近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况. C. 国际上常用恩格尔系数(食物支出金额总支出金额)反映一个国家人民生活质量的高低. “八五”计划以来我们城镇居民的恩格尔系数如下表.年份19911992199319941995恩格尔系数%53.852.950.149.949.9讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A中的每一个x,按照某种对应关系f,在数集B中都与唯一确定的y和它对应,记作:.新知:函数定义.设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作:. 其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range).试试:(1)已知,求、的值.(2)函数值域是 .反思:(1)值域与B的关系是 ;构成函数的三要素是 、 、 .(2)常见函数的定义域与值域.函数解析式定义域值域一次函数二次函数,其中反比例函数探究任务二:区间及写法新知:设a、b是两个实数,且aa= 、x|xb= 、x|xb= .(2)= .(3)函数y的定义域 ,值域是 . (观察法) 典型例题例1已知函数.(1)求的值;(2)求函数的定义域(用区间表示);(3)求的值.变式:已知函数.(1)求的值;(2)求函数的定义域(用区间表示);(3)求的值. 动手试试练1. 已知函数,求、的值.练2. 求函数的定义域.三、总结提升 学习小结函数模型应用思想;函数概念;二次函数的值域;区间表示. 知识拓展求函数定义域的规则: 分式:,则; 偶次根式:,则; 零次幂式:,则. 当堂检测(时量:5分钟 满分:10分)计分:1. 已知函数,则( ). A. 1 B. 0 C. 1 D. 22. 函数的定义域是( ). A. B. C. D. 3. 已知函数,若,则a=( ). A. 2 B. 1 C. 1 D. 24. 函数的值域是 .5. 函数的定义域是 ,值域是 .(用区间表示)课后作业 1. 求函数的定义域与值域.2. 已知,.(1)求的值;(2)求的定义域;(3)试用x表示y. 课后反思:函数是高中数学中一个非常重要的内容之一,贯穿整个高中数学学习。其重要性体现在:1、函数源于在现实生活,具有广泛的应用。2、函数是沟通代数、几何、三角等内容的桥梁。3、函数部分内容蕴涵重要数学方法,分类讨论的思想,数形结合的思想,化归的思想等。这些思想方法是进一步学习数学和解决数学问题的基础。 然而函数这部分知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来不容易,由于函数这部份知识的主要思想特点体现于一个“变”字,接受起来就更难。研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的观点去看待相问题。 这是函数概念的第一课, 在教学中,先引导学生将实例1抽象出数学模型,再由学生自己将实例2,3抽象出数学模型。进一步理解通过函数的对应图来认识函数,达到数形结合的效果,使学生对概念理解上更直观,然后归纳出函数定义。对于函数的概念强调学生能用自己的语言描述出来,能有自己的理解。尤其是高中的函数定义是在集合的观点下建立的,对其中的关键字一定要强调,更应该多举例子加深学生的理解。 如:学生和凳子的比喻,班级的学生必须每个人都有座位,至于一个人一个凳子还是几个人一条凳子都没关系,教室里的凳子可以多出来没人坐,但切不可有学生没有座位.还有一个形象的比喻就是在古代一妻一夫,多妻一夫是合法的,切不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度影视剧本改编聘请合同规范书
- 2025年度办公室租赁合同模板及注意事项
- 2025年度店面转让协议书附带原供应链及采购权合同
- 2025年度高原茶叶绿色有机购销合同书
- 2025年度蔬菜种植基地与农业信息化服务机构合作合同
- 2025电子商务B2B交易流程售后服务保障合同
- 2025年智能电网电气设备维护外包服务合同模板
- 2025年度娱乐设施财产抵押融资合同
- 2025年度新型能源技术研发与应用合同
- 2025二手装载机买卖合同范本专业指导交易过程
- 中山酒店行业状况分析
- 液压车间生产管理制度
- 植保无人机应急处置预案
- 湖北十堰生产实习报告
- 营销体系之业绩如何做增量10大方法
- 《中国古代的服饰》课件
- (部编版)小学道德与法治《学习伴我成长》完整版课件
- 新人教版高中数学选择性必修第一册全套精品课件
- 小学语文综合实践活动方案10篇
- 捷豹XF汽车说明书
- 应急车辆维护与保养方案
评论
0/150
提交评论