




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
14.3.1 提公因式法 一、内容和内容解析 1、内容因式分解的概念,提公因式法 2、内容解析 因式分解是对整式的一种变形,是把一个多项式转化成几个整式相乘的形式,它与整式乘法是互逆变相的关系,因式分解是后续学习分式、二次根式、一元二次方程、二次函数等知识的基础,是解决整式恒等变形和简便运算问题的重要工具。 提公因式法是因式分解的基本方法,通过逆向运用分配律,将多项式中各项的公因式“提”到括号外边,从而把多项式分解为此公因式与多项式剩余部分所组成的因式的积。其中,公因式可以是单项式、也可以是数或多项式。提公因式法分解因式的关键是找准公因式。基于以上分析,确定本节课的教学重点:运用提供因式法分解因式。 二、目标和目标分析 1、目标 (1)了解因式分解的概念。 (2)了解公因式的概念,能用提公因式法进行因式分解。 2、目标分析达成目标(1)的标志是:学生知道因式分解的概念,知道因式分解与整式乘法是互逆变形的关系,能识别某一式子变形是否为因式分解。达成目标(2)的标志是:学生知道公因式就是多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的积;知道公因式可以是单项式、也可以是多项式;知道提公因式法分解因式要经历“找出公因式”“提取公因式”两个步骤,提取公因式就是把公因式提到括号外面,括号内的因式即为多项式除以公因式所得的商式,并能按此步骤对多项式进行因式分解。三、教学问题诊断分析因式分解不同与数的计算,是对整式进行变形,学生第一次接触时在理解上会有一定的困难,在对整式乘法的认识还不够深入的情况下,就遇到与之有互逆关系的新情境,学生有时会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生认识因式分解的概念,理解它与整式乘法的互逆变形关系。学生在运用提公因式法分解因式的过程中经常遇到困难是公因式选取不准确,表现在忽视了某些相同的字母或式子,导致提取公因式后的因式中仍然含有公因式。解决此问题的关键是找出多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的积作为公因式。本节课的教学难点是:正确理解因式分解的概念,准确找出公因式。 四、教学过程设计1、了解因式分解的概念 复习与回顾 计算下列各式: (1) x(x+1)= ; (2) (x+1)(x1)= 。问题1:根据整式的乘法,你能算出(1)、(2)的结果吗?问题2:上一节我们已经学习了整式的乘法,知道可以将几个整式的乘积化为一个多项式的形式。反过来,在式子的变形中,有时需要将一个多项式写成几个整式的乘积的形式。请把下列多项式写成整式的乘积的形式: (3)x+x= _; (4)x1= 。追问1:根据整式的乘法,你能猜想出问题(3)、(4)的结果吗? 追问2:在多项式的变形中,有时需要将一个多项式化成几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式。你认为因式分解与整式乘法有什么关系?师生活动:学生观察并独立思考,尝试着写出答案,在教师给出因式分解的概念之后,学生回答因式分解与整式乘法是互逆变形关系。 教师归纳: 整式乘法 (x+1)(x-1) x-1 因式分解 注意:因式分解与整式乘法是相反方向的变形设计意图:通过具体问题的解决,让学生在观察、思考和操作的过程中,了解因式分解的概念,认识其本质属性将和差化为乘积的式子变形,同时发现因式分解与整式乘法的互逆变形关系,为后续探索因式分解的具体方法做铺垫。 练习1:判断下列各式哪些是整式乘法?哪些是因式分解? (1) ax4x=x(a-4) (2) 2x(xy)=2x2xy (3) (3a1)=9a6a+1 (4) 2ab+2ac=2a(b+c)设计意图:通过实例辨析,让学生进一步理解因式分解的概念。2、 探索因式分解的方法提公因式法问题3:你能试着将多项式pa+pb+pc分解因式吗?(1) 这个多项式有什么特点?(2) 你能将这个多项式分解因式吗?(3) 分解因式的依据是什么?(4) 分解后的各因式与原多项式有何关系?师生活动:教师提出问题,学生先独立思考,然后学生代表展示求解过程。在回答(1)后,学生能发现这个多项式的各项都有一个公共的因式,教师指出此因式叫做这个多项式的公因式,在得出pa+pb+pc =p(a+b+c)后,学生发现:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式。教师指出:这种分解因式的方法叫做题公因式法。设计意图:让学生进一步了解因式分解与正式乘法的关系;了解因式分解的理论依据;了解公因式的概念,初步理解提公因式法分解因式。3、 找公因式找一找:8ab +12abc 的公因式是什么?师生活动:师生共同分析,并解答问题。此时教师引导学生明白找8ab 与12abc 的公因式的基本程序:先看系数8与12的最大公约数,再找出两项字母部分ab与abc都含的字母a和b,然后找出都含的字母a和b的最低次数,进而选定8ab 与12abc 的公因式4ab。教师给出找公因式的方法:一看系数(找最大公约数),二看字母(找相同字母),三看指数(找最低指数) 练习2:说出下列多项式各项的公因式: (1)ma + mb ; (2)2kx 4ky ;(3)5y+15y ; (4)ab2ab+ab 设计意图:通过练习,让学生熟记找公因式的方法。注意: 各项系数都是整数时,因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的。4、 初步应用提公因式法例1 把8ab + 12abc 分解因式(教师讲解例题) 解:8ab+12abc =4ab2a+4ab3bc =4ab(2a+3bc)追问1:如果提出公因式4a,得出8ab + 12abc=4a(2ab+3bc),那么另一个因式2ab+3bc是否还有公因式呢?追问2:在利用提出公因式法分解因式时应注意什么?师生互动:教师提出问题,学生独立思考,互动交流,最后达成共识:用提公因式法分解因式时,最后一定要满足条件各因式中再无公因式。设计意图:通过例题的教学,引导学生:(1)了解提公因式法分解因式的基本步骤;(2)积累找公因式的经验找到公因式的最简单的方法是找出多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的乘积;(3)知道提公因式法就是把多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是由多项式除以公因式得到的;(4)用提公因式法分解因式后,应保证含有多项式的因式中再无公因式。 练习3:动手试一试你会了吗? 把下列各式用提公因式法因式分解: (1)ax+ay (2)3mx-6my (3)8mn+2mn (4)12xyz-9xy师生活动:四名学生板书,其他学生在练习本上完成,然后学生互动交流。设计意图:让学生进一步巩固因式分解的基本方法提公因式法,积累经验,通过练习,熟练用提取公因式法分解因式。 例2 把 2a(b+c) -3(b+c)分解因式.分析:(b+c)是这个式子的公因式,可以直接提出. 解: 2a(b+c)3(b+c) =(b+c)(2a-3)师生活动:师生共同交流后完成例题。设计意图:此例题的公因式是多项式b+c,通过此例题的教学,提高学生对“公因式”的认识可以是单项式,也可以是多项式,增强对提公因式法分解因式的本质的认识。练习4:(1)把下列各式分解因式: p(a+b)-q(a+b).(2)先分解因式,再求值: 4a(x+7)-3(x+7),其中a=-5,x=3.师生活动:两名学生板书,其他学生在练习本上完成,然后学生互动交流。设计意图:增强对例题中“公因式”的认识可以是单项式,也可以是多项式,让学生知道在解题过程中要有整体思想。5、 巩固应用提公因式法练习5:(1)把6(x-2)+x(2-x)分解因式(2) 53+43+93师生活动:两名学生板书,其他学生在练习本上完成,然后小组交流解题经验,解题过程由学生进行评价。设计意图:提高学生对公因式的认识,让学生知道公因式除了可以是单项式、多项式外,还可以通过变形得出,让学生通过练习知道,在做题的过程中除了要有牢固的基础知识外,还应具备一定的变换思维。6、 归纳小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1) 本节课学习了哪些主要内容?(2) 因式分解的目的是什么?因式分解与整式乘法有什么区别和联系?(3) 提公因式法的一般步骤是什么?应用提公因式法分解因式时要注意什么?设计意图:通过小结,使学生梳理本节课所学内容,使学生进一步理解因式分解、公因式的概念,总结应用提公因式法分解因式的步骤,建立知识之间的联系,促进学生数学思维品质的优化。7、 布置作业教材第119页,习题14.3,第1题、第4题(1)5、 目标检测设计1、下列变形中是因式分解的是( )(A) x(x+1)=x+x (B)x+2x+1=(x+1)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福德家政月嫂知识培训课件
- 2025年历史中考战争题目及答案
- 禁毒知识新教师培训材料课件
- DB61T 508.3-2011 富硒双低油菜专用肥
- 野外医学考试题及答案
- 2025年防震救灾题库及答案
- 江西名师联盟2025年数学高三上期末学业水平测试试题
- 山西省吕梁市离石区2025-2026学年数学高三上期末检测试题
- 禁毒知识培训内容
- 四川省彭州市彭州中学2025-2026学年数学高三第一学期期末质量跟踪监视模拟试题
- 2025陕西寰宇正信科技产业发展有限公司招聘(71人)笔试参考题库附答案解析
- 2025年秋季开学第一课《翻越你的浪浪山》课件
- 2025年浙江省中考科学试题卷(含答案解析)
- DB11∕T 510-2024 公共建筑节能工程施工质量验收规程
- 人教版初中九年级全册英语单词表(完整版)
- GJB标准化大纲
- 钢筋混凝土排水管二级管配筋设计图册
- 同济大学复变函数复变函数与积分变换课件
- 东北地区近百年降水时间序列变化规律的小波分析_姜晓艳_图文
- 初识Ps基础上手指南PPT课件
- 教导处行事历
评论
0/150
提交评论