江苏省泰州市靖江实验学校九年级上学期期中数学试卷(解析版) 苏科版.doc_第1页
江苏省泰州市靖江实验学校九年级上学期期中数学试卷(解析版) 苏科版.doc_第2页
江苏省泰州市靖江实验学校九年级上学期期中数学试卷(解析版) 苏科版.doc_第3页
江苏省泰州市靖江实验学校九年级上学期期中数学试卷(解析版) 苏科版.doc_第4页
江苏省泰州市靖江实验学校九年级上学期期中数学试卷(解析版) 苏科版.doc_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

泰州市靖江实验学校2012-2013学年九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在下表相应位置上)1(3分)使有意义的x的取值范围是()abcxdx考点:二次根式有意义的条件.专题:计算题分析:根据二次根式的被开方数为非负数即可解答解答:解:由二次根式有意义得:3x40,解得:x故选d点评:本题考查二次根式有意义的条件,难度不大,注意掌握二次根式的被开方数为非负数2(3分)(2006无锡)设一元二次方程x22x4=0的两个实数为x1和x2,则下列结论正确的是()ax1+x2=2bx1+x2=4cx1x2=2dx1x2=4考点:根与系数的关系.分析:根据一元二次方程根与系数的关系求则可设x1,x2是关于x的一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的两个实数根,则x1+x2=,x1x2=解答:解:这里a=1,b=2,c=4,根据根与系数的关系可知:x1+x2=2,x1x2=4,故选a点评:本题考查了一元二次方程根与系数的关系3(3分)(2010随州)在rtabc中,c=90,sina=,则tanb的值为()abcd考点:锐角三角函数的定义;互余两角三角函数的关系.分析:本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解解答:解:由题意,设bc=4x,则ab=5x,ac=3x,tanb=故选b点评:本题利用了勾股定理和锐角三角函数的定义通过设参数的方法求三角函数值4(3分)下列命题中正确的是()a一组对边平行的四边形是平行四边形b两条对角线相等的平行四边形是矩形c两边相等的平行四边形是菱形d对角线互相垂直且相等的四边形是正方形考点:命题与定理.专题:应用题分析:两组对边平行的四边形是平行四边形;两条对角线相等的四边形是矩形;邻边相等的平行四边形是菱形;对角线互相垂直,相等且互相平分的四边形是正方形解答:解:a、两组对边平行的四边形是平行四边形,故本选项错误b、两条对角线相等的四边形是矩形,故本选项正确c、邻边相等的平行四边形是菱形,故本选项错误d、对角线互相垂直,相等且互相平分的四边形是正方形,故本选项错误故选b点评:本题考查了平行四边形,矩形,菱形,正方形的判定定理,要熟记这些判定定理5(3分)点p到o的圆心o的距离为d,o的半径为r,d与r的值是一元二次方程x23x+2=0的两个根,则点p与o的位置关系为()a点p在o内b点p在o外c点p在o上d点p不在o上考点:点与圆的位置关系;解一元二次方程-因式分解法.分析:求解方程求得方程的两个根即可得到d与r的值,然后做出判断即可解答:解:解方程x23x+2=0得:x=1或x=2,dr,点p不在o上,故选d点评:本题考查了点与圆的位置关系及用因式分解法解一元二次方程的知识,解题的关键是正确的解方程6(3分)当b0时,化简等于()a2b1b1c12bd1考点:二次根式的性质与化简;绝对值.专题:计算题分析:由于b0,直接利用二次根式的基本性质进行化简,再由绝对值的一般性质知|b|=b,=1b,再代入所求代数式,即可得所求结果解答:解:b0,得|b|=b,b10,=1b,=b+1b=12b故选c点评:本题主要考查二次根式的简单性质,对简单的二次根式进行化简,是中考中的常考内容,要引起注意7(3分)如图,o的直径cd=5cm,ab是o的弦,abcd,垂足为m,tanobm=,则ab的长是()a2cmb3cmc4cmd2cm考点:垂径定理;解直角三角形.分析:在直角三角形obm中,利用锐角三角函数定义表示出tanobm,由tanobm的值设出om=3xcm与bm=4xcm,再由直径cd的长求出半径ob的长,利用勾股定理列出方程,求出方程的解得到x的值,确定出bm的长,再由cd垂直于ab,利用垂径定理得到m为ab的中点,即可求出ab的长解答:解:在rtobm中,tanobm=,设om=3xcm,bm=4xcm,由直径cd=5cm,得到ob=2.5cm,根据勾股定理得:ob2=om2+bm2,即6.25=9x2+16x2,解得:x=0.5,则bm=4x=2cm,abdc,m为ab的中点,即am=bm=ab,则ab=2bm=4cm故选c点评:此题考查了垂径定理,勾股定理,锐角三角函数定义,利用了方程的思想,熟练掌握垂径定理是解本题的关键8(3分)如图,一种电子游戏,电子屏幕上有一正方形abcd,点p沿直线ab从右向左移动,当出现:点p与正方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线ab上会发出警报的点p有()a7个b8个c9个d10个考点:等腰三角形的判定;正方形的性质.专题:计算题;压轴题分析:根据正方形的性质,利用等腰三角形的判定方法,从右到左依次考虑,即可得到所有构成等腰三角形的情况,得到直线ab上会发出警报的点p的个数解答:解:当bc=bp时,bcp为等腰三角形;当p与b重合时,apc为等腰三角形;当p运动到ab边的中点时,pd=pc,此时pcd为等腰三角形;当p与a重合时,pbd为等腰三角形;当pa=ad时,pad为等腰三角形;当ap=ac时,apc是等腰三角形;当bd=bp时,bdp 是等腰三角形,综上,直线ab上会发出警报的点p有7个故选a点评:此题考查了等腰三角形的判定,以及正方形的性质,熟练掌握等腰三角形的判定是解本题的关键二、填空题(每题3分,共30分)9(3分)=2考点:二次根式的乘除法.专题:计算题分析:根据二次根式的除法法则进行运算,然后将二次根式化为最简即可解答:解:原式=2故答案为:2点评:本题考查了二次根式的除法运算,属于基础题,掌握二次根式的除法法则及二次根式的化简是关键10(3分)(2012历下区二模)己知是锐角,且,则=45考点:特殊角的三角函数值.专题:计算题分析:直接根据sin60=进行解答即可解答:解:sin60=,是锐角,且,+15=60,解得=45故答案为:45点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键11(3分)小明沿着坡度为1:2的山坡向上走了100m,则他升高了20m考点:解直角三角形的应用-坡度坡角问题.分析:首先根据题意画出图形,由小明沿着坡度为1:2的山坡向上走了100m,利用坡度的意义,根据三角函数的定义,即可求得答案解答:解:如图,过点a作aebc于点e,坡度为1:2,i=tanb=,sinb=,ab=100m,ae=20(m)即他升高了20m故答案为:20m点评:此题考查了坡度坡角问题此题难度不大,注意根据题意构造直角三角形,并解直角三角形;注意掌握数形结合思想的应用12(3分)(2008濮阳)某花木场有一块如等腰梯形abcd的空地(如图),各边的中点分别是e、f、g、h,用篱笆围成的四边形efgh场地的周长为40cm,则对角线ac=20cm考点:等腰梯形的性质;三角形中位线定理.分析:利用等腰梯形和中位线定理和已知条件,即可推出结论解答:解:等腰梯形的对角线相等,ef、hg、gf、ef均为梯形的中位线,ef=hg=gf=ef=ac又ef+hg+gf+ef=40cm,即2ac=40cm,则ac=20cm对角线ac=20cm点评:本题考查的是等腰梯形的性质即三角形中位线的性质,属一般题目13(3分)最简二次根式与是同类二次根式,则xy=9考点:同类二次根式.专题:计算题分析:由同类二次根式的定义得到根指数相等,被开方数相等,列出方程,求出x与y的值,即可确定出xy的值解答:解:根据题意得:x23=2x,y1=2,且x23=2x0,x22x3=0,即(x3)(x+1)=0,解得:x=3或x=1(舍去),y=3,则xy=9故答案为:9点评:此题考查了同类二次根式,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式14(3分)关于x的方程mx2(2m1)x+m2=0有两个实数根,则m的取值范围是m且m0考点:根的判别式;一元二次方程的定义.分析:根据方程有两个实数根,得到根的判别式大于等于0,列出关于m的不等式,求出不等式的解集,即可得到m的范围解答:解:关于x的方程mx2(2m1)x+m2=0有两个实数根,=b24ac=(2m1) 24m(m2)0,解得:m,则m的取值范围是m且m0故答案为:m且m0点评:此题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的根的判别式=b24ac当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根同时考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的定义15(3分)若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm、深约为2 cm的小坑,则该铅球的直径约为14.5cm考点:垂径定理的应用;勾股定理.专题:应用题分析:根据题意,把实际问题抽象成几何问题,即圆中与弦有关的问题,根据垂径定理,构造直角三角形,小坑的直径就是圆中的弦长,小坑的深就是拱高,利用勾股定理,设出未知数,列出方程,即可求出铅球的直径解答:解:根据题意,画出图形如图所示,由题意知,ab=10,cd=2,od是半径,且ocab,ac=cb=5,设铅球的半径为r,则oc=r2,在rtaoc中,根据勾股定理,oc2+ac2=oa2,即(r2)2+52=r2,解得:r=7.25,所以铅球的直径为:27.25=14.5 cm点评:解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个16(3分)如图,o的直径ab与弦cd相交于点e,若ae=7,be=1,cosaed=,则cd=2考点:垂径定理;勾股定理;解直角三角形.专题:计算题分析:过o作ofcd,交cd于点f,利用垂径定理得到df=cf,连接od,有ae+be求出ab的长,进而确定出ob的长,由obeb求出oe的长,在直角三角形oef中,利用锐角三角函数定义求出ef的长,利用勾股定理求出of的长,在直角三角形odf中,利用勾股定理求出df的长,由cd=2df即可求出cd的长解答:解:过o作ofcd,交cd于点f,可得df=cf,连接od,ae=7,be=1,ob=od=ab=8=4,oe=obeb=3,在rtoef中,oe=3,cosaed=,ef=oecosaed=2,根据勾股定理得:of=,在rtodf中,根据勾股定理得:df=,则cd=2df=2故答案为:2点评:此题考查了垂径定理,勾股定理,以及解直角三角形,熟练掌握垂径定理是解本题的关键17(3分)如图,梯形abcd中,adbc,点e在bc上,ae=be,点f是cd的中点,且afab,若ad=2.7,af=4,ab=6,则ce的长为2.3考点:梯形;等腰三角形的性质;勾股定理;三角形中位线定理.专题:计算题分析:延长af至bc延长线上交于g点,由已知可证明agb=eag,则ef为abg的中位线,得出ef=3,还可证明fg=4,由勾股定理得eg=5,则求得ce的长为2.3解答:解:延长af至bc延长线上交于g点,ae=be,abe=bae,afab,abe+agb=90,bae+eag=90,agb=eag,abe=age,ae=eg,ge=be,e为bg中点,ef是abg的中位线,故可得:ef=ab=3,fg=af=4,ag=8,bg=10,eg=5,afab,ae=be,点e是bg的中点,eg=be=5,可得efg为直角三角形,ce=egcg=egad=52.7=2.3故答案为:2.3点评:本题考查了三角形的中位线定理、等腰三角形的性质和勾股定理,是一道综合题,难度较大18(3分)如图,在边长相同的小正方形组成的网格中,点a、b、c、d都在这些小正方形的顶点上,ab、cd相交于点p,则sinapd的值是考点:相似三角形的判定与性质;勾股定理;锐角三角函数的定义.专题:网格型分析:首先连接be,ae,过点a作afbe于点f,由勾股定理即可得ab=ae=,be=,则可求得af的长,继而可求得答案解答:解:如图,连接be,ae,过点a作afbe于点f,由题意得:ab=,ae=,be=,ae=ab,bf=be=,在rtabf中,af=,sinabf=,cdbe,apd=abe,sinapd=故答案为:点评:此题考查了三角函数的定义、等腰三角形的判定与性质以及勾股定理此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用三、解答题19(8分)计算:考点:特殊角的三角函数值;实数的性质;零指数幂;负整数指数幂;二次根式的性质与化简.专题:计算题分析:按照实数的运算法则依次计算,注意(3.14)0=1,()1=2解答:解:原式=1+(2)+4=12+3=2点评:本题考查的知识点是:任何不等于0的数的0次幂是1,ap=20(8分)先化简,再求值:(),其中a满足a2+a1=0考点:分式的化简求值.专题:计算题分析:原式括号中两项通分并利用同分母分式的减法法则计算,除数分母利用平方差公式分解因式,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,由已知方程求出a的值,代入计算即可求出值解答:解:a2+a1=0,即a2=(a1),原式=1点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式21(8分)关于x的一元二次方程x2x+p1=0有两个实数根x1、x2(1)求p的取值范围;(2)若,求p的值考点:根的判别式;根与系数的关系.专题:计算题分析:(1)根据一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac的意义得到0,即1241(p1)0,解不等式即可得到p的取值范围;(2)根据一元二次方程ax2+bx+c=0(a0)的解的定义得到x12x1+p1=0,x22x2+p1=0,则有x12x1=p+1=0,x22x2=p+1,然后把它们整体代入所给等式中得到(p+12)(p+12)=9,解方程求出p,然后满足(1)中的取值范围的p值即为所求解答:解:(1)方程x2x+p1=0有两个实数根x1、x2,0,即1241(p1)0,解得p,p的取值范围为p;(2)方程x2x+p1=0有两个实数根x1、x2,x12x1+p1=0,x22x2+p1=0,x12x1=p+1=0,x22x2=p+1,(p+12)(p+12)=9,(p+1)2=9,p1=2,p2=4,p,p=4点评:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程ax2+bx+c=0(a0)的解的定义22(8分)如图,ab、cd是o的弦,a=c求证:ab=cd考点:圆心角、弧、弦的关系.专题:证明题分析:连接bo,od,利用等腰三角形性质证圆心角相等,即可得出ab=cd解答:解:连接bo,od,oa=ob,a=b,oc=od,c=d,a=c,aob=cod,ab=cd点评:此题主要考查了圆周角定理和等弧对等弦,以及全等三角形的判定和性质23(10分)(2006上海)已知:如图,在abc中,ad是边bc上的高,e为边ac的中点,bc=14,ad=12,sinb=求:(1)线段dc的长;(2)tanedc的值考点:解直角三角形;直角三角形斜边上的中线.专题:计算题分析:(1)在rtabd中,根据已知条件求出边ab的长,再由bc的长,可以求出cd的长;(2)根据直角三角形中,斜边上的中线等于斜边的一半,求出c=edc,从而求出c的正切值即求出了tanedc的值解答:解:(1)ad是bc边上的高,abd和acd是rt,在rtabd中,sinb=,ad=12,ab=15,bd=,又bc=14,cd=5;(2)在rtacd中,e为斜边ac的中点,ed=ec=ac,c=edc,tanedc=tanc=点评:此题要灵活应用三角函数公式和解直角三角形的公式,同时还要掌握“直角三角形中,斜边上的中线等于斜边的一半“等知识点24(10分)国家为了加强对房地产市场的宏观调控,抑制房价的过快上涨,规定购买新房满5年后才可上市转卖,对二手房买卖征收差价的x%的附加税某城市在不征收附加税时,每年可成交10万套二手房;征收附加税后,每年减少0.1x万套二手房交易现已知每套二手房买卖的平均差价为10万元如果要使每年征收的附加税金为16亿元,并且要使二手房市场保持一定的活力,每年二手房交易量不低于6万套问:二手房交易附加税的税率应确定为多少?考点:一元二次方程的应用.分析:国家征收的附加税金总额=二手房的销售额(即单价销售量)征收的税率以此可得出方程,然后根据“不低于6万套”舍去不合题意的解解答:解:设税率应确定为x%,根据题意得10(100.1x)x%=16,x2100x+1600=0,解得x1=80,x2=20,当x2=80时,100.180=26,不符合题意,舍去,x1=20时,1000.120=86,答:税率应确定为20%点评:此题考查了一元二次方程的应用,此题不仅是一道实际问题,而且结合了现在房价问题,是一个比较典型的题目25(10分)(2011宁波)如图,在abcd中,e、f分别为边ab、cd的中点,bd是对角线,过点a作agdb交cb的延长线于点g(1)求证:debf;(2)若g=90,求证:四边形debf是菱形考点:菱形的判定;平行四边形的性质.专题:证明题;压轴题分析:(1)根据已知条件证明be=df,bedf,从而得出四边形dfbe是平行四边形,即可证明debf,(2)先证明de=be,再根据邻边相等的平行四边形是菱形,从而得出结论解答:证明:(1)四边形abcd是平行四边形,abcd,ab=cd点e、f分别是ab、cd的中点,be=ab,df=cdbe=df,bedf,四边形dfbe是平行四边形,debf;(2)g=90,agbd,adbg,四边形agbd是矩形,adb=90,在rtadb中e为ab的中点,de=be,四边形dfbe是平行四边形,四边形debf是菱形点评:本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,比较综合,难度适中26(10分)如图,已知斜坡ab长60米,坡角(即bac)为30,bcac,现计划在斜坡中点d处挖去部分坡体(用阴影表示)修建一个平行于水平线ca的平台de和一条新的斜坡be(下面两小题的结果都精确到0.1米,参考数据:1.732)(1)若修建的斜坡be的坡度为1:0.8,则平台de的长为14.0米;(2)斜坡前的池塘内有一座建筑物gh,小明在平台e处测得建筑物顶部h的仰角(即hem)为30,测得建筑物顶部h在池塘中倒影h的俯角为45(即hem),测得点b、c、a、g、h、h在同一个平面内,点c、a、g在同一条直线上,且hgcg,求建筑物gh的高和ag的长考点:解直角三角形的应用-坡度坡角问题;解直角三角形的应用-仰角俯角问题.分析:(1)由三角函数的定义,即可求得df与bf的长,又由坡度的定义,即可求得ef的长,继而求得平台de的长;(2)首先设gh=x米,由三角函数的定义,即可求得gh的长,继而求得答案解答:解:(1)fmcg,bdf=bac=30,斜坡ab长60米,d是ab的中点,bd=30米,df=bdcosbdf=30=1525.98(米),bf=bdsinbdf=30=15(米),斜坡be的坡度为1:0.8,=,解得:ef=12(米),de=dfef=25.981214.0(米);故答案为:14.0;(2)设gh=x米,则mh=ghgm=x15(米),gh=gh=x米,mh=gh+gm=x+15(米),在rtemh中,tan30=,在rtemh中,tan45=1,=,即=,解得:x=56.0,即gh=56.0米,bef=deh=45,ef=bf=15(米),em=mh=x+15=71.0(米),fm=ef+em=15+71.0=86.0(米),cg=fm=86.0米,ac=abcos30=60=3052.0(米),ag=cgac=86.052.0=34.0(米)答:建筑物gh的高为56.0米,ag的长约为34.0米点评:此题考查了坡度坡角问题以及俯角仰角的定义此题难度较大,注意根据题意构造直角三角形,并解直角三角形;注意掌握数形结合思想与方程思想的应用27(12分)(2011盘锦)已知菱形abcd的边长为5,dab=60将菱形abcd绕着a逆时针旋转得到菱形aefg,设eab=,且090,连接dg、be、ce、cf(1)如图(1),求证:agdaeb;(2)当=60时,在图(2)中画出图形并求出线段cf的长;(3)若cef=90,在图(3)中画出图形并求出cef的面积考点:菱形的性质;三角形的面积;全等三角形的判定与性质;锐角三角函数的定义.专题:综合题;压轴题分析:(1)利用ad=ab,ag=ae,gad=eab(sas)证明agdaeb即可;(2)当=60时,ae与ad重合,作dhcf于h由已知可得cdf=120,df=dc=5,在rtcdh中,ch=dcsin60,继而求出cf的长;(3)当cef=90时,延长ce交ag于m,连接ac,cef=90,只需求出ec的长,又ec=mcme,在rtame和rtamc中求解mc和me的长即可解答:解:(1)菱形abcd绕着点a逆时针旋转得到菱形aefg,ag=ad,ae=ab,gad=eab=四边形aefg是菱形,ad=abag=aeagdaeb(3分)(2)解法一:如图(1),当=60时,ae与ad重合,(4分)作dhcf于h由已知可得cdf=120,df=dc=5cdh=cdf=60,ch=cf在rtcdh中,ch=dcsin60=5=,(6分)cf=2ch=5(7分)解法二:如图(1),当=60时,ae与ad重合,(4分)连接af、ac、bd、ac与bd交于点o由题意,知af=ac,fac=60afc是等边三角形fc=ac由已知,dao=bad=30,acbd,ao=adcos30=(6分)ac=2ao=5fc=ac=5(7分)(3)如图(2),当cef=90时,(8分)延长ce交ag于m,连接ac四边形aefg是菱形,efagcef=90,gme=90ame=90(9分)在rtame中,ae=5,mae=60,am=aecos60=,em=aesin60=在rtamc中,易求ac=5,mc=ec=mcme=,=()(11分)scef=ecef=(12分)点评:本题考查菱形的性质,同时涉及了锐角三角函数的定义、全等三角形的判定与性质及三角形面积公式,注意这些知识的熟练掌握并灵活运用,难度较大28(12分)如图,已知abc中,ab=10cm,ac=8cm,bc=6cm,如果点p由b出发沿ba方向向点a匀速运动,速度为2cm/s,同时点q由a出发沿ac方向向点c匀速运动,速度为1cm/s,连接pq,设运动的时间为t(单位:s)(0t5)解答下列问题:(1)当t为何值时,apq是直角三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论