



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
光通讯词典*光纤种类*光纤之基本构造包括纤芯(core),增加全反射作用强度之包层(cladding),而最外层则为保护外皮(ProtectiveSheath)。光纤以传输模态可分单膜及多膜,若将纤核直径大小限制在10m左右,在1300nm传输波长中,便仅有一个传输模态在光纤中传输,即为单膜,若将纤核直径加大,光纤内有多种路径供传递,则称为多膜。单膜主要用在长途通信(须与半导体雷射配合),因此产品要求较严苛,而全球光纤使用量目前仍以单膜为主。单、多膜使用量约10:1,而多膜则适用在智慧型大楼内部及区域性的光纤网路铺设,在全球光纤到家的趋势发展中,未来多膜光纤的成长性高,极被看好。从生产的角度而言,虽单膜要求较高,但多膜的生产流程却较复杂,且产品单价约是单膜的23倍。全球光纤1999年的市场占有率如下:康宁30、Lucent15、Alcatel13、Sumitomo(住友电工)7、Furukawa(古河电工)、Fujikura(藤仓)各占7。*光纤生产流程*光纤生产方式为,先作预型体(preform),采用汽相沈积法,可分为垂直沈积式(VAD,由日本NTT开发)、外部沈积式(OVD,由康宁开发)及内部沈积式(MCVD,由BellLab开发)等方式,目前光纤业者大多采用MCVD制作多膜光纤。在石英管中加氧气及高纯度的卤化物,加热长成多层折射率不同的玻璃,玻璃再收缩变成实心棒,即为预型体,用此法很容易控制预型体的形状及大小,预型体成形後,先作量测,再移到石墨炉中加热抽丝成为光纤,为保护其强度,避免受潮及污染,必须在裸光纤表面镀上保护层,整个生产流程须45天(作预型体则须12天)。*石英玻璃纤维为制造光纤的最理想材料,主要原因是通过气相沉积方法,很容易从卤化物原料得到高纯度玻璃,且其折射率的控制或掺杂浓度的控制比其他方法更容易。光纤的抽丝速率主要受限于镀膜过程,因必须考虑保护层的均匀度及材料的烘干,目前抽丝速率可达300-600米/分。而其外围保护层的材料亦可分为两大类:1.利用紫外线烘干材料,如高分子环氧基丙烯酸纸、2.利用加热烘干的材料,如矽树脂及各种高分子材料。*光纤耦合器*光纤耦合器(Coupler)又称分歧器(Splitter),是将光讯号从一条光纤中分至多条光纤中的元件,属於光被动元件领域,在电信网路、有线电视网路、用户回路系统、区域网路中都会应用到,与光纤连接器分列被动元件中使用最大项的(根据ElectroniCat资料,两者市场金额在2003年约达25亿美元)。光纤耦合器可分标准耦合器(双分支,单位12,亦即将光讯号分成两个功率)、星状树状耦合器、以及波长多工器(WDM,若波长属高密度分出,即波长间距窄,则属於DWDM),制作方式则有烧结(Fuse)、微光学式(MicroOptics)、光波导式(WaveGuide)三种,而以烧结式方法生产占多数(约有90)。烧结方式的制作法,是将两条光纤并在一起烧融拉伸,使核芯聚合一起,以达光耦合作用,而其中最重要的生产设备是融烧机,也是其中的重要步骤,虽然重要步骤部份可由机器代工,但烧结之後,仍须人工作检测封装,因此人工成本约占1015左右,再者采用人工检测封装须保品质的一致性,这也是量产时所必须克服的,但技术困难度不若DWDMmodule及光主动元件高,因此初期想进入光纤产业的厂商,大部分会从光耦合器切入,毛利则在2030。国外业者有JDS、E-Tek、Oplink、Gould等,目前都已直接在大陆设厂生产耦合器。*高密度波长多工分工器*为解决频宽的需求,除了铺设新的光缆等方法外,就是在现有的传输网路上架设分波多工器(WDM),若分出的光波长密度甚高,即是高密度波长多工分工器(DWDM;DenseWavelengthDivisionMultiplexer)。DWDM的概念就是将光纤中传输资料的光讯号加以分解,如我们所知,阳光至少可分解出7种纯色光,因此DWDM内的滤镜最主要的用途即在此:析出纯色的光,因此我们在谈DWDM时,会说到4or8or16channels的东西,其实说穿了那就是指滤镜的精密程度,能析出多少种不同波长的光,若为8种,则光纤的可使用频宽就可以提升8倍,因此DWDM可以大幅降低频宽的建置成本。其基本原理就和彩虹一样,依照光的不同波长分出,进而把多个不同波长的光讯号在同一根光纤中传输,提升传输容量。传输过程中,为怕光讯号衰减必须经由放大,因此DWDM配合掺铒光纤放大器(EDFA)则可充分利用光传输的高频宽特性,使几百个不同波长的光信号在1.5m波长絛围同时传播於同一条光纤,增加了光传输速率。DWDM可用3种方式作到:*滤波器(Filter),以二氧化矽为镀膜材料,依设计差异,约需经80100多层以上的镀膜,由於均匀度要求严谨,及镀膜层数高达百层以上,需耗时910个小时,OCLI的filter镀膜技术在业界享有一定知名度,OCLI的镀膜设备几乎可以自定规格,再委由设备厂依规格生产设备提供给OCLI,即便如此,OCLI的良率也仅能控制在67成左右。用filter方式作出的DWDM系统其温度特性较好,因此如用在室外或海底有温度顾虑之处,就会用filter,不超过16个通道(channel)几乎都用此方式,但到高channel时,最後一个channel的损失会随之增大,用filter作DWDM较简单,且适用於长途传输上。*阵列式波导光栅(arraywaveguide;AWG),近似半导体制程(采用4或6晶圆,尽管近似半导体制程,但仍有些许差异,例如AWG强调蚀刻的深度,而光罩数则不若一般逻辑多,约23道光罩即可),在晶圆上作氧化沈积,再用光蚀刻法做出复杂的光波导,可以作到32个以上的channel数,AWG会有慢慢增加的趋势,适用於人口稠密的大都会区,由於对温度控制较不如filter,因此必须有温度控制器(如powersupply)以便作温度补偿,因此在海底电缆系统中,如何提供电源将成为一大问题,较不适用於海底电缆的长途通信,约在温度70度上下才可以运作,目前Lucent、Pirelli(已被康宁购并)有用AWG方式作DWDM,且有专利。*Fiberbragggratting,利用雷射照在相位光罩上,产生干涉条纹,在一对光感应的光纤上,产生不同折射率的规律性光纤而成为bragg光栅,此种方式较少用,理由是难量产、且多channel时较不适用。*目前filter的专利不多,而AWG专利较多。部份厂商认为虽然AWG可以作到高channel数目的DWDM,但以filter方式组装的DWDM并不会被淘汰,毕竟AWG仍有温度上的问题亟待克服。*DWDM是目前国内外厂商在光通讯领域最热门的投资产品之一,不过在另外的领域,如光开关(opticalswitch)也开始策划,据说是可以完全取代DWDM的先进技术,值得密切观察!*光收发模组*光收发模组中的零组件包含:发光源(半导体雷射LD或LED)或受光检光器(PINAPD二极体)、驱动电路、放大电路、连接器及外壳,因此牵涉的技术包含光学、电子、机械等领域。其中的LD又可分为3类:分布回馈型、F-P型、及垂直共振腔面射型(VerticalCavitySurfaceEmittingLaserDiode;就是VCSEL),前两类的雷射皆由晶粒的侧面发光,VCSEL则由晶粒的表面发光。LD输出功率较高、速度快、发光度集中,但成本却较高,较适合配合单膜光纤用在长途通信上。*在检光器部份,PIN二极体的成本比APD低廉,但灵敏度高、反应迅速。适用于短波长的PIN多用Silicon为材料,而长波通讯或高频操作时,就须用InGaAs或GaAs为材料;而APD二极体的增益受温度影响极大,因此常必须在电路设计时,作温度补偿,反而增加系统设计的复杂度。*另外发光及受光元件的晶粒大小仅约0.5mm0.5mm,为便于与光纤耦合,须将晶粒作适当的构装,由于LD对温度的变化相当敏感,因此构装时必须考虑散热或温度控制的问题。若以传输速率来分,光收发模组的规格以1.25Gbps为目前主流,售价约在100多美元左右(另有低速的155Mbps及高速的10Gbps)。另一个区分光收发模组产品规格,则是功率大小及接收灵敏度的高低,但这部份并无统一规格,而是次系统厂商依据其产品所订。*光收发模组的生产无法完全自动化生产,人工比重高。全球知名的光收发模组厂商有HP、Lucent、Infineon等。另外,为配合光纤到桌及光纤区域网路的发展趋势,市场上也出现SmallFormFactor(SFF)的光收发模组,较有名的有Lucent的LC、3M阵营的VF45(3M、Infineon等发起)、AMP阵营的MTRJ(HP、AMP等发起)。*垂直共振腔面射型雷射*在光收发模组中,曾经谈过发光源中的雷射二极管,可分为:F-P型、分布回馈型(DFB)、VCSEL三类。DFBLD适用于长途通讯或骨干通讯上,而F-P型则较适用于中距离通讯,而目前将要形成趋势的光纤区域网路,则有可能让VCSEL(VerticalCavitySurfaceEmittingLaserDiode)崭露头角。VCSEL的共振腔正好垂直与晶片表面,因此让激发出的雷射光也垂直与晶片表面,与一般由侧面发光的雷射二极体不同,另外VCSEL先天上的特性(垂直腔)让其在晶圆阶段就可以整片地进行测试,不像其他边射型LD或LED必须等到制成二极体时,才能一个一个测试,因此VCSEL可以有压低成本的优势。再者,一般LD(因从侧边发光)须复杂精准的镜头(lens)去与其他光学元件耦合,无形中增加了生产光收发模组时的困难度,而VCSEL的雷射光呈圆锥状,不须复杂的光学设计就可进行光耦合动作,也让光收发模组的生产流程更加简单。*目前区域网路的主流是FastEthernet(125Mbps)及GigabitEthernet(1.25Gbps),在GigabitEthernet的传送标准中,多膜光纤使用的是850nm及1.3m的波长,而在单膜则是1.3m的波长,而在FastEthernet多膜光纤系统中,多使用1.3m的LED,但LED反应速度慢,不利于将传输速度提升至Gigabit级,因此给了VCSEL很大的发挥空间。*目前,已知HP(即独立出去的Agilent)、Honeywell、AMP等已经推出采用850nmVCSEL设计的光纤收发器。而国外VCSEL磊晶片的提供者包含:Honeywell、EPI、Infineon等,用VCSEL设计的光收发模组则有Agilent、AMP、Honeywell等。*AWG阵列波导光栅*AWG是作成DWDM中的另一种方式。一组特定长度排列的光波导形成的光栅,使用具有分波的能力。主要用在高密度波长多工解多工器(DWDM)的制作上。其原理为:先将光源(含多种波长之光调变讯号)经由分波元件分成数个至数十个振幅大致相等的子光源,再将这些子光源依序导入事先设计好长度的阵列波导中,使其各自拥有特定的输出相位,再经由多重输出耦合元件后,对于特定波长的光源将会在特定的位置形成建设性干涉而输出。如此即可将不同波长之光源(讯号)分配或撷取出来,而达到波长多工解多工之目的。*AWG是第一个将平面波导线路(PlanarLightwaveCircuit)技术应用于商品化的元件。其做法为在矽晶圆上沉积二氧化矽(SiO2)膜层,再利用微影制程(Photolithography)及反应式离子蚀刻法(ReactiveIonEtch)定义出阵列波导及分光元件等,接著在最上层覆以保护层即可完成。由于AWG使用与一般半导体相同的制程,在多通道数的制作成本与低通道数相差不多,但更适合量产,而且整合度(integration)较高,因此在多通道元件及日后发展上具有相当的潜力。*光放大器*光讯号在长距离通讯时必然会产生讯号衰减,因此在适当的距离必须加装光放大器或中继器,将讯号加以放大并继续传输。光放大器的使用原理是讯号在不经光电讯号转换下,直接将讯号加以放大。相较于中继器(regenerator),光放大器在网路升级时不必更换全部的系统,仅需作部份设备(通常是在terminal端)的更换即可,而且光放大器可以作多通道(multi-channel)的讯号放大,刚好可以配合DWDM系统使用。*光放大器主要分为:光纤放大器、半导体光放大器、拉曼放大器。光纤放大器利用掺稀土离子玻璃(石英等介质)的增益特性,在光纤中将光讯号直接放大,因其增益与讯号的偏极化无关,且具有极高的放大频宽,因此应用架构较简单。与中继器相比,光纤放大器让系统的升级更加简化,且可以配合WDM(分波多工器)的应用,来增加传输容量及距离。*掺稀土光纤放大器主要产品则有掺铒光纤放大器(EDFA)、掺镨光纤放大器(PDFA)。EDFA主要应用在1550nm频带上(光讯号在玻璃光纤内的传输,大多使用13101550nm的波段),由于其放大波段正处于单膜光纤的低损耗窗口,与现有光通讯系统的波长可相匹配,且EDFA具大输出功率、增益高、频带宽、杂讯低、对偏振不敏感、结构简单等特点,也是目前商业化极成功的光放大器产品,已经广泛应用于长途高速光纤系统、有线电视(cableTV)、海底光缆传输系统上。*PDFA则用于1310nm的频带,采用掺谱氟化光纤为放大介质,由于氟化光纤有易碎、水溶性的特点,必须克服材料上的问题,因此商业化进程较缓慢,使用也较有限。*EDFA国际大厂有Pirelli、Lucent、Nortel、NEC、JDS等。*光纤放大器主要由几个元件组成:掺稀土元素光纤(如掺铒或掺镨光纤)、分波多工器(WDM)、高功率泵激半导体雷射(pumplaser)、光隔绝器、光耦合器等。其原理是掺铒或掺镨光纤外加
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年网络安全行业网络安全技术应用前景探讨报告
- 2025年电子科技产业5G技术应用前景研究报告
- 2025年生态环境保护产业发展现状及前景分析报告
- 2025年环保科技行业清洁能源技术前景研究报告
- 2025年家居建材行业绿色建材市场前景预测报告
- 2025年虚拟现实娱乐行业创新应用与市场前景研究报告
- 国家事业单位招聘2025中国地质博物馆招聘应届毕业生拟聘用人员笔试历年参考题库附带答案详解
- 四川省2025年四川安岳县引进急需紧缺专业人才(68人)笔试历年参考题库附带答案详解
- 吉安市2025江西吉安市吉州区社会保险中心招聘就业见习人员3人笔试历年参考题库附带答案详解
- 保定市2025河北定州事业单位选聘工作人员143名笔试历年参考题库附带答案详解
- 幼儿园财务审批报销制度
- 统编版七年级道德与法治上册《第三课梦想始于当下》单元检测卷(含答案)
- 附件1:施工安全风险辨识、评定表
- 高级考评员职业技能鉴定考试题库(含答案)
- 抗艾滋病药物介绍
- 8《荷花淀》《小二黑结婚》《党费》群文阅读课件 2024-2025学年统编版高中语文选择性必修中册
- 编钟教学课件教学课件
- DL∕ T 1060-2007 750KV交流输电线路带电作业技术导则
- 电子元器件的焊接知识大全
- (2024年)羊水栓塞完整版pptx
- 非法侵入住宅谅解书范本
评论
0/150
提交评论