计量经济学实验报告051.doc_第1页
计量经济学实验报告051.doc_第2页
计量经济学实验报告051.doc_第3页
计量经济学实验报告051.doc_第4页
计量经济学实验报告051.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计量经济学实验报告班级 金融 学号 101062008051 姓名 一、 实验名称:城乡居民消费、政府消费对经济增长的的影响的实证分析二、 实验准备数据城乡居民消费、政府消费对经济增长的影响的实证分析年份人均国内生产总值城镇居民消费支出总计农村居民消费支出总计人均中央财政支出人均地方财政支出199223111671.7659.2199.89161219.48776199329982110.8769.65110.70648280.9926199440442851.31016.81146.38548336.937199550463537.571310.36164.74352398.6369199658463919.51572.08175.77315472.77778199764204185.61617.15204.85173542.04294199867964331.61590.3250.52701614.98225199971594615.91577.4330.11066718.310462000785849981670.13435.51518817.92683200186225309.011741.1451.943551029.1365200293986029.921834.3527.173361189.6532003105426510.941943.3574.191151333.30112004123367182.12184.7607.292981584.20852005140537942.882555.4671.171491923.75952006161658696.552829.02760.102852315.08512007195249997.473223.85865.976432901.65620082269811242.93660.71007.08653693.6729三、 实验步骤基本数据处理由于要对城乡居民消费、政府消费对经济增长的的影响,所以对数据取对数设立回归模型如下:LnYt =C+1Ln X1t +2Ln X2t +3Ln X3t +4Ln X4tt+ Ut其中Y表示人均国内生产总值;X1表示城镇居民消费支出总计;X2 表示农村居民消费支出总计;X3表示人均中央财政支出;X4表示人均地方财政支出;t=1992-2008。 从散点图中可以看出lnx1、lnx2、lnx4与lny线性关系较明显,lnx3与lny线性关系不明显多重共线性检验运用OLS方法估计模型的参数,利用计量经济计算机软件Eviews计算可得如下结果Dependent Variable: LNYMethod: Least SquaresDate: 12/14/10 Time: 22:38Sample: 1992 2008Included observations: 17VariableCoefficientStd. Errort-StatisticProb. C0.3061690.2184131.4017890.1863LNX10.5365260.1245074.3091950.0010LNX20.3372700.1011053.3358310.0059LNX3-0.0427580.045412-0.9415680.3650LNX40.2737670.0358707.6322300.0000R-squared0.999523 Mean dependent var8.984530Adjusted R-squared0.999364 S.D. dependent var0.630476S.E. of regression0.015897 Akaike info criterion-5.205453Sum squared resid0.003033 Schwarz criterion-4.960390Log likelihood49.24635 F-statistic6288.743Durbin-Watson stat1.800759 Prob(F-statistic)0.000000由于LnX3的参数估计未能通过t检验,而且符号的经济意义也不合理,故认为解释变量间存在多重共线性在Eviews中计算解释变量之间的简单相关系数,得如下结果从表中可以发现LnX1与LnX2存在高度相关性。用Eviews找出最简单的回归形式Dependent Variable: LNYMethod: Least SquaresDate: 12/16/10 Time: 02:25Sample: 1992 2008Included observations: 17VariableCoefficientStd. Errort-StatisticProb. LNX11.2006730.02020559.425630.0000C-1.2335220.172253-7.1610880.0000R-squared0.995770 Mean dependent var8.984530Adjusted R-squared0.995488 S.D. dependent var0.630476S.E. of regression0.042348 Akaike info criterion-3.375653Sum squared resid0.026900 Schwarz criterion-3.277628Log likelihood30.69305 F-statistic3531.405Durbin-Watson stat0.587274 Prob(F-statistic)0.000000Dependent Variable: LNYMethod: Least SquaresDate: 12/16/10 Time: 02:30Sample: 1992 2008Included observations: 17VariableCoefficientStd. Errort-StatisticProb. LNX21.3576280.04808728.232840.0000C-1.1145740.358351-3.1102860.0072R-squared0.981529 Mean dependent var8.984530Adjusted R-squared0.980298 S.D. dependent var0.630476S.E. of regression0.088496 Akaike info criterion-1.901578Sum squared resid0.117474 Schwarz criterion-1.803553Log likelihood18.16341 F-statistic797.0931Durbin-Watson stat0.491763 Prob(F-statistic)0.000000 Dependent Variable: LNYMethod: Least SquaresDate: 12/16/10 Time: 02:31Sample: 1992 2008Included observations: 17VariableCoefficientStd. Errort-StatisticProb. LNX30.8215880.05202515.792120.0000C4.1875800.30607613.681490.0000R-squared0.943266 Mean dependent var8.984530Adjusted R-squared0.939484 S.D. dependent var0.630476S.E. of regression0.155098 Akaike info criterion-0.779392Sum squared resid0.360829 Schwarz criterion-0.681367Log likelihood8.624835 F-statistic249.3911Durbin-Watson stat0.422348 Prob(F-statistic)0.000000 Dependent Variable: LNYMethod: Least SquaresDate: 12/16/10 Time: 02:31Sample: 1992 2008Included observations: 17VariableCoefficientStd. Errort-StatisticProb. LNX40.7439300.02897625.673970.0000C3.9487960.19755119.988720.0000R-squared0.977750 Mean dependent var8.984530Adjusted R-squared0.976267 S.D. dependent var0.630476S.E. of regression0.097129 Akaike info criterion-1.715420Sum squared resid0.141511 Schwarz criterion-1.617395Log likelihood16.58107 F-statistic659.1528Durbin-Watson stat0.408117 Prob(F-statistic)0.000000从以上表可以看出LnY受LnX1影响最大,其次LnX2,再次LnX3,受LnX4影响性对较小,因此选LnY=-1.233522+ 1.200673Ln X1为初始回归模型进行逐步回归。首先,在初始模型中引入LnX2得到如下表Dependent Variable: LNYMethod: Least SquaresDate: 12/16/10 Time: 02:40Sample: 1992 2008Included observations: 17VariableCoefficientStd. Errort-StatisticProb. LNX11.0574120.1475887.1645940.0000LNX20.1647150.1680880.9799350.3437C-1.2396060.172594-7.1822220.0000R-squared0.996042 Mean dependent var8.984530Adjusted R-squared0.995476 S.D. dependent var0.630476S.E. of regression0.042404 Akaike info criterion-3.324347Sum squared resid0.025174 Schwarz criterion-3.177309Log likelihood31.25695 F-statistic1761.506Durbin-Watson stat0.577158 Prob(F-statistic)0.000000尽管拟合优度提高,但是LnX2的参数未能通过t检验,所以去掉LnX2.第二,将LnX4引入初始模型,可得到下表Dependent Variable: LNYMethod: Least SquaresDate: 12/16/10 Time: 13:10Sample: 1992 2008Included observations: 17VariableCoefficientStd. Errort-StatisticProb. LNX10.9026220.07437012.136930.0000LNX40.1898230.0465024.0820640.0011C0.0180440.3294220.0547740.9571R-squared0.998069 Mean dependent var8.984530Adjusted R-squared0.997793 S.D. dependent var0.630476S.E. of regression0.029619 Akaike info criterion-4.042013Sum squared resid0.012282 Schwarz criterion-3.894975Log likelihood37.35711 F-statistic3617.809Durbin-Watson stat0.640688 Prob(F-statistic)0.000000 可以看出引入LnX4,模型拟合优度提高,且参数符号合理,变量也通过t检验,所以LnX4保留。再引入LnX3可以得到下表VariableCoefficientStd. Errort-StatisticProb. LNX10.9295370.05371317.305760.0000LNX3-0.1545950.040856-3.7839500.0023LNX40.3086550.0457656.7443860.0000C-0.1127710.238346-0.4731410.6440R-squared0.999081 Mean dependent var8.984530Adjusted R-squared0.998869 S.D. dependent var0.630476S.E. of regression0.021204 Akaike info criterion-4.666973Sum squared resid0.005845 Schwarz criterion-4.470922Log likelihood43.66927 F-statistic4711.074Durbin-Watson stat1.168672 Prob(F-statistic)0.000000可以看出引入LnX3后拟合优度再次提高且参数都通过t检验,所以LnX3保留。因此,最终的经济增长函数应以Y=f(Lnx1,LnX4,LnX3)为最优,拟合结果如下:Lny= -0.112771+ 0.929537LnX1 -0.154595LnX3+ 0.308655LnX4 序列相关性检验 经过调整后的模型变成:Lny= -0.112771+ 0.929537LNX1 -0.154595LNX3+ 0.308655LNX4 所以,只针对此模型进行序列相关性的分析。进行拉格朗日乘数检验,首先是二阶的结果如下:Breusch-Godfrey Serial Correlation LM Test:F-statistic1.981532 Probability0.184097Obs*R-squared4.502560 Probability0.105264其次进行三阶的检验。其结果如下:Breusch-Godfrey Serial Correlation LM Test:F-statis

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论