




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
切线长定理及三角形的内切圆导学案 得胜镇顺河学校 九年级数学组 贺华友学习目标1、了解切线长的概念了解三角形的内切圆、三角形的内心等概念。2、理解切线长定理,并能熟练运用切线长定理进行解题和证明(重点)3、会作已知三角形的内切圆(重点)教学流程一、 知识准备:1、 直线和圆的有几种位置关系?分别是那几种?2、 判断直线与圆相切有几种方法?如何判断直线与圆相切?3、 角平分线的判定和性质是什么?二、 引入课题过圆上一点可以作圆的一条切线,那么过圆外一点可以作圆的几条切线呢?从而引入课题。三、 自学新知:1自学教材自学教材P96-P98,思考下列问题(1)通过自学教材P98页的探究你知道什么是切线长吗?切线长和切线有区别吗?区别在哪里?(2)通过自学教材P98页的探究可得切线长定理:从圆外一点可以引圆的两条切线,它们的_相等,这一点和圆心的连线平分_(3)通过自学教材P98页的探究你知道如何证明切线长定理吗?如图,已知PA、PB是O的两条切线求证:PA=PB,OPA=OPB 证明:_(4)若PO与圆相分别交于C、D,连接AB于PO交于点E,图中有哪些相等的线段?有哪些相等的角,有哪些相等的弧?有哪些互相垂直的线段?有哪些全等的三角形。(5)_叫做三角形的内切圆,三角形叫做圆的_三角形,内切圆的圆心是_的交点,内切圆的圆心叫做三角形的_。四当堂检测1、过圆外一点作圆的切线,这点和 ,叫做这点到圆的切线长。2、从圆外一点可以引圆的两条切线,它们的_相等,这一点和圆心的连线平分_3、与三角形各边都 的圆叫三角形的内切圆;内切圆的圆心叫;这个三角形叫做。4、作三角形两内角的平分线,两角平分线的交点就是内切圆的圆心, 是内切圆的圆心。5、如图,PA,PB,分别切O于点A,B,P=70,C等于 。6、在ABC中,A=50(1)若点O是ABC的外心,则BOC= . (2) 若点O是ABC的内心,则BOC= .五、典型精析:例1:如图,PA,PB是O的切线,A,B为切点,OAB=30(1)求APB的度数;(2)当OA=3时,求AP的长例2如图在ABC中,内切圆I与边BC、CA、AB分别相切于点D、E、F,B60,C70,求EDF的度数。例3 :(教材97页例2)如图,ABC的内切圆O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长。六、课堂小结当堂练习一、判断1、过一点可以作圆的两条切线。 ( ) 2、切线长就是切线的长。 ( )二、已知PA、PB与O相切于点A、B,O的半径为2,(1)若四边形OAPB的周长为10,则PA= (2)若APB=60则PA= 作业设计一、选择题 1如图1,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,APB=30,则ACB=( ) A60 B75 C105 D120 (1) (2) (3) (4) 2从圆外一点向半径为9的圆作切线,已知切线长为18,从这点到圆的最短距离为( ) A9 B9(-1) C9(-1) D9 3圆外一点P,PA、PB分别切O于A、B,C为优弧AB上一点,若ACB=a,则APB=( ) A180-a B90-a C90+a D180-2a 二、填空题1如图2,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知PA=7cm,则PCD的周长等于_2如图3,边长为a的正三角形的内切圆半径是_3如图4,圆O内切RtABC,切点分别是D、E、F,则四边形OECF是_ 三、综合提高题1如图所示,EB、EC是O的两条切线,B、C是切点,A、D是O上两点, 如果E=46,DCF=32,求A的度数 2如图所示,PA、PB是O的两条切
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青岛版(六三制)数学四年级上册第六、七单元综合素质达标试卷(含解析)
- 2025年公需科考试试题(含答案)
- 2025年秋季新学期第一次班主任工作培训会校长讲话:凝心抓班级管理携手促育人实效
- 2025年高校大学生群体常见诈骗手法测试题(附答案)
- 2025年高考政治时政热点题及答案
- 长沙民政学院试题及答案
- 香港雅思考试题库及答案
- 宇宙英语试题及答案
- 宗教与教育领域-洞察及研究
- 中介合作机构管理办法
- 艺术管理概论课件
- 医养结合模式研究
- 汉语言文学毕业论文-论肖申克的救赎中安迪的英雄形象
- 设备材料采购合同供应商履约评价表
- 语音发声(第四版)语音篇
- 关于食用油的科普知识分享
- 湖南美术出版社小学三年级上册书法练习指导教案
- 浙江省杭州市西湖区2023-2024学年数学三年级第一学期期末学业质量监测试题含答案
- 江南大学食品工艺学复试题
- 决定你一生成就的21个信念及要点
- 五年级上册数学教案-练习一-北师大版
评论
0/150
提交评论